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Abstract: We revisit two longstanding puzzles in supersymmetric gauge theories. The

first concerns the question of the holomorphy of the coupling, and related to this the

possible definition of an exact (NSVZ) beta function. The second concerns instantons

in pure gluodynamics, which appear to give sensible, exact results for certain correlation

functions, which nonetheless differ from those obtained using systematic weak coupling

expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and

Murayama, showing that if their regulated action is written suitably, the holomorphy of

the couplings is manifest, and it is easy to determine the renormalization scheme for which

the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of

schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not

selected by any compelling physical consideration. For the second question, we explain why

the instanton computation in the pure supersymmetric gauge theory is not reliable, even

at short distances. The semiclassical expansion about the instanton is purely formal; if

infrared divergences appear, they spoil arguments based on holomorphy. We demonstrate

that infrared divergences do not occur in the perturbation expansion about the instanton,

but explain that there is no reason to think this captures all contributions from the sector

with unit topological charge. That one expects additional contributions is illustrated by

dilute gas corrections. These are infrared divergent, and so difficult to define, but if non-

zero give order one, holomorphic, corrections to the leading result. Exploiting an earlier

analysis of Davies et al, we demonstrate that in the theory compactified on a circle of

radius β, due to infrared effects, finite contributions indeed arise which are not visible in

the formal β → ∞ limit.
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1 Two puzzles

In a rich research program, which stimulated much of the work of the past 25 years on

supersymmetric dynamics, Novikov, Shifman, Vainshtein and Zakharov (NSVZ) studied

instanton effects in supersymmetric gauge theories [1–4]. NSVZ considered SU(N) gauge

theories with and without chiral matter (gluodynamics). In the case of pure supersymmet-

ric SU(2) (“SUSY Gluodynamics”), NSVZ considered the Green’s function:

∆(x) ≡ 〈W 2
α(x1, θ1)W

2
β (x2, θ2)〉|θ1=θ2=0 = 〈(λ(x1)λ(x1)) (λ(x2)λ(x2))〉, (1.1)

where trace over gauge indices is understood. They noted, first, that as a correlation

function of chiral fields, the lowest component is necessarily a constant. This follows since,

for the correlator of a chiral field, Φ(y) = A(y) +
√

2ψ(y) + θ2F (y) with yµ = xµ + iθσµθ̄,

a transformation by ǭQ̄ on the correlator 〈A(0)ψ(x)〉 yields

/∂〈A(0)A(x)〉 = 0. (1.2)
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At short distance, NSVZ argued that, since the theory is asymptotically free, the Green’s

function can be reliably computed, provided that it is well-defined. Remarkably, they found

that the leading result is infrared finite and, indeed, a constant. For the generalization of

∆ to SU(N):

∆(x) = 〈(λ(x1)λ(x1)) · · · (λ(xN )λ(xN ))〉

=
2N

(N − 1)!(3N − 1)
M3N

PV e
− 8π2

g2 −iθ 1

g2N
. (1.3)

Here MPV is the mass of a Pauli-Villars regulator (of which much more shortly).

NSVZ then contended that the leading instanton result was exact, as a consequence of

the symmetries of the theory. More precisely, by considering the structure of the collective

coordinate measure and the constraints on the correlator (for fixed values of the collective

coordinates) due to supersymmetry, they asserted that all Feynman graph corrections to

the leading order result would cancel.

Finally, since unbroken supersymmetry requires that ∆ is constant, cluster decompo-

sition, they argued, requires that

〈(λ(x)λ(x)) (λ(0)λ(0))〉 = 〈λ(0)λ(0)〉2 , (1.4)

and the single instanton computation gives a reliable calculation of the gaugino condensate.

This analysis generalizes to SU(N), where one studies a correlation function involving N

factors of λλ, as in eq. (1.3).

This result also leads to the interesting proposal that one can write an exact beta

function in supersymmetric gauge theories [5].1 NSVZ argued that the instanton result,

including the one loop determinant, was exact and renormalization group invariant. Dif-

ferentiating eq. (1.3) then yields:

β(g) = −
3N g3

16π2

1 − 2N g2

16π2

. (1.5)

These two results are closely related, as we can see by considering the consequences of

holomorphy for ∆(x). Indeed, the NSVZ discussion is a precursor of Seiberg’s exploitation

of holomorphy [7]. As first stressed by NSVZ, a chiral correlator, such as ∆, if well-defined,

is necessarily a holomorphic function of

τ =
8π2

g2
hol

+ iθ. (1.6)

Care, as they noted, is required in the definition of ghol in this expression. Redefinitions

of g change the real part of τ . They argued that, indeed, the holomorphic coupling was

related to a more conventional definition by

8π2

g2
hol

=
8π2

g2
+ 2N log(g). (1.7)

1This beta function was first written down by Jones in an early study of the multiplet of anomalies [6].
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Understanding this connection will be much of the focus of this paper. The single instanton

amplitude is proportional to eiθ. As the perturbative corrections to the instanton introduce

no further θ-dependence, holomorphy requires that the result must be proportional to e−τ .2

The instanton amplitude, at one loop, in the regularization scheme introduced by ’t Hooft,

is given by

M3N
PV

1

g2N
e
− 8π2

g2 −iθ
. (1.8)

This combination is precisely Λ3N , where Λ is the conventional renormalization group

invariant scale, computed through two loop order. The NSVZ assertion that the result is

exact is the statement that Λ is given exactly by this expression, coinciding with the β

function of NSVZ.

While carefully reasoned, each of these results raises interesting questions. For the ex-

act beta function, it is natural to ask: what, precisely, is the scheme in which this expression

holds? By considering an abelian gauge theory, Shifman and Vainshtein provided a concep-

tual setting [8]. In this context one can introduce a supersymmetric Pauli-Villars regulator.

The mass of the regulator field is a superpotential term; written in terms of this “bare”

mass parameter the effective action should be holomorphic. However, the kinetic term for

the regulator field is renormalized, and the “physical” mass scale is related to the bare mass

term by a wave function renormalization factor. This permits the definiton of an “exact”

beta function, written in terms of an anomalous dimension which must be computed order

by order in perturbation theory. By comparing theories with different regulator masses,

m1 and m2, it is possible to define a precise notion of a Wilsonian action, integrating out

between m1 and m2 [9]. This action is holomorphic in the bare, holomorphic masses, and

the Wilsonian evolution of couplings is exhausted at one loop. In terms of physical mass

scales, the couplings evolve with more conventional renormalization group equations.

The non-abelian case is complicated, in general, by the problem of writing a holo-

morphic regulator. The answer often given as to scheme dependence is that the regu-

larization/renormalization scheme leading to the NSVZ β-function is the one in which ’t

Hooft performed the one loop instanton computation. The idea is that there is again an

underlying holomorphic parameter, and that the NSVZ beta function arises by consider-

ing a suitable wave function renormalization for the regulator fields (in particular, there

must be a factor g2/3 between these). As we will remark, while conceptually certainly

correct, this answer is inadequate. First, it obscures the question of scheme dependence.

Second, it is simply not precise. If one means by this regularization studying the theory

in Wess-Zumino gauge, choosing background field gauge for the remaining gauge field, and

introducing Pauli-Villars fields for each fluctuating field, this scheme is neither BRST in-

variant nor supersymmetric; indeed, it is not even a complete regulator — higher derivative

terms are required beyond one loop. So this approach must be supplemented by finite coun-

terterms and with them a precise renormalization scheme in every order. It is possible to

give a manifestly supersymmetric formulation, including higher derivatives, but this scheme

2More precisely, since the theory is invariant under θ → θ + 2π, only the τ -dependence e−nτ is allowed

in holomorphic quantities.
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is still non-BRST invariant [10, 11], and local counterterms are still required. In addition,

the regulated lagrangian is not (manifestly) a holomorphic function of the gauge coupling

or cutoff(s) with such a regulator, so simple arguments based on holomorphy alone are

not available.3 An alternative approach is based on considering theories with spontaneous

breaking. In this case, beta functions can sometimes be studied as holomorphic functions

of chiral field expectation values, leading to the NSVZ expression [9, 12]. We will explain

the issue of scheme dependence in these computations as well.

As for the instanton computation, the strong coupling computation is known to yield

an incorrect result for the gaugino condensate [13–15]; it disagrees with an alternative,

systematic, computation of 〈λλ〉, which again anticipated some aspects of Seiberg’s pro-

gram [7, 15]. One studies, say, a theory with gauge group SU(N) and N − 1 flavors. If one

gives each flavor a small mass, mf , then one can reliably compute in this theory, deter-

mining the vacuum state and correlation functions in that state. The gaugino condensate

is a holomorphic function of m and the coupling, and one can analytically continue the

result to large m, where the theory is the pure supersymmetric gauge theory. In this way,

one can determine 〈λλ〉 in a computation that is systematic at every stage; the result dis-

agrees, by a numerical factor (
√

4/5 in the case of SU(2)) with that of NSVZ. Additional,

quite beautiful and sophisticated analyses, have verified the validity of the weak coupling

analysis [16, 17]. Additional discrepancies have been explored in [18].

In this paper we will provide resolutions to both of these puzzles. For the question of the

NSVZ β function, we start with the regulator for the pure gauge theory proposed by Arkani-

Hamed and Murayama (AHM) [19, 20].4 These authors suggested that one could regulate

this theory by starting with N = 4 supersymmetric Yang-Mills theory (or one of the finite

N = 2 theories), and including mass terms for extra adjoint multiplets. By carefully

studying anomalies in various rescalings, they exhibited the holomorphy of the effective

action and the NSVZ β-function. We revisit this analysis, noting that the AHM regulator

provides an extremely simple framework in which to understand these issues. In standard

presentations of the theory, the action is not a holomorphic function of τ = 8π2

g2
0

+ iθ, where

g0 is the “bare” coupling (a sensible notion in a finite theory). A suitable rescaling allows

an almost trivial identification of the object, τ , in terms of which the tree level action

is holomorphic. The low energy effective action must be holomorphic in τ , and indeed

it is easy to check that the resulting effective action is holomorphic through two loops.

The AHM regulator is instructive in other respects. It permits the definition of sensible

Wilsonian renormalization group transformations, which are manifestly holomorphic in the

parameters. The mass parameters can be treated as spurions, not only for breaking of chiral

symmetries, but for conformal symmetry as well. These remarks extend immediately to

theories which can be embedded in N = 2 theories. In this setup, one can easily describe,

3In the work of [10, 11], the problem occurs in the action for the B ghosts; it appears possible to use

holomorphy in a combinations of masses and couplings to obtain a beta function exhausted at one loop;

however, because of the other complications of this construction, particularly the finite counterterms needed

in each order to enforce BRST invarince, we will not explore these issues here; with the regulator we actually

employ, the analysis is simple and unambiguous.
4The recognition that the perturbed N = 4 theory is finite dates to the work of [21, 22].
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explicitly, the renormalization scheme which leads to the exact beta function of NSVZ.

But this is readily seen to be just one of a class of renormalization schemes, each of which

leads to its own “exact” beta function. The NSVZ scheme, while simple, we will see is not

selected by any compelling physical consideration.

The discrepancy in the strongly coupled instanton computation has been the source

of some puzzlement, and even leads to suggestions that there may be additional vacua in

the theory beyond those associated with the gaugino condensate [23]. It also raises further

questions about the meaning of the NSVZ β function. In this note, we explain, first, that

the problem already exists at the level of ∆, and is not directly connected to the question

of discrete symmetry breaking and vacuum degeneracy. We describe why, even for short

distances, there is no systematic weak coupling computation of ∆(x). The problem is that

the theory is not under control in the infrared. Infrared divergences if present, either in

perturbation theory about the instanton, or beyond (e.g. in dilute gas corrections), lead

to order one corrections to the leading order result, compatible with holomorphy. We

demonstrate, using the techniques of NSVZ, that in the perturbation expansion about the

instanton, there are no such divergences. At the same time, the dilute gas corrections

are not under control. More precisely, absent an infrared regulator, there is no argument

that contributions to ∆ from configurations with topological charge 1 are exhausted by the

instanton and perturbative corrections to it.

One needs a definition of the theory which tames the infrared; we exploit two which

have been extensively studied. We reconsider some aspects of the weak coupling computa-

tion [15–17], in which one introduces quark masses and continues holomorphic from small

to large quark masses. We focus principally on symmetry preserving Greens functions such

as ∆, rather than the gaugino condensate, again observing the discrepancy. While instruc-

tive, however, these computations provide limited insight as to the source of the problem.

More helpful is the theory compactified on a circle. This theory was studied in [24]. For

small circle radius, β (the notation is chosen in analogy to finite temperature), the system

does admit a weak coupling description, free of infrared difficulties. These authors were

able to obtain the ground state of the system, and calculate the gaugino condensate di-

rectly; the result agrees with the weak coupling analysis. The calculation however, does

not resemble the infinite volume computation, involving configurations we might describe

as “half instantons.” It is interesting to calculate the correlator ∆ and to understand the

origin of the discrepancy with the strong coupling result. In the regulated theory, the

dilute gas does not contribute, but the leading instanton contribution to ∆(x) is different.

There is a contribution which is formally identical to the conventional instanton at infinite

β, but it gives a different contribution to ∆, as the infinite β limit does not commute with

the collective coordinate integral. There are two other contributions, which do not have

an O(4) invariant large β limit, yet make finite contributions. We identify other correla-

tion functions, with good infrared behavior, for which the large β limit does agree with

the naive infinite volume behavior. These computations demonstrate unambiguously the

infrared nature of the problem. They also make clear that there are contributions to ∆ in

the topological charge one sector beyond those of the usual instanton solution.

In the next section, we discuss the problem of regulators for supersymmetric gauge
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theories, explaining the limitations of the background field Pauli-Villars regulator. We

explore the regulators introduced in [19, 20], describing the holomorphic renormalization

group mentioned above. In section 3, we explain the exact β function(s). Then, in section 4,

we discuss the problem of infrared divergences in strongly coupled theories, explaining why

the strong coupling calculation is not reliable. We leave for the appendix the demonstration

of the absence of infrared divergences in the perturbation series about the instanton, which

proves a non-renormalization theorem. In section 5, we explain why an infrared regulator

is needed to define the dilute gas corrections, which are otherwise order one and compatible

with holomorphy. In section 6.1, we discuss the weakly coupled theory, focussing on issues

surrounding the computation of the correlator ∆. Then we turn to the theory on R3×S1 in

section 6.2. After briefly reviewing the results of [24], we describe the instanton solutions

which contribute to ∆, and the limit of large radius. We consider a number of issues,

including the question of whether, in fact, this is a good regulator. Our conclusions are

presented in section 7.

2 Regulating the ultraviolet

Issues of holomorphy and their connections to the β function are most easily understood

in the framework of Abelian gauge theories. [8] In such theories, it is enough to introduce

a chiral Pauli-Villars field [8]. The corresponding mass parameter is a holomorphic pa-

rameter. If one integrates out physics between scales m1 and m2, the resulting effective

lagrangian is [9]

Leff = − 1

32π2

∫

d2θ W 2
α

(

8π2

g2
+ iθ + b0 log(m

(2)
hol/m

(1)
hol)

)

+

∫

d2θ m
(2)
holΦΦ + Z(m1,m2)

∫

d4θ Φ†Φ. (2.1)

where the subscript hol denotes the holomorphic (bare) parameter. Due to the require-

ments of holomorphy, evolution of the gauge couplings, in terms of these parameters, is

exhausted by the one loop correction. So the renormalization group equation, in terms of

the holomorphic parameter, is very simple:

βhol = mhol
∂g

∂mhol
= −b0

g3

16π2
. (2.2)

However, Shifman and Vainshtein explain that it is more appropriate to use a physical

mass scale, mphys = Z−1mhol in the equation, and this leads to an expression involving the

anomalous dimension:

β = mphys
∂g

∂mphys
= −b0

g3

16π2
(1 + γ). (2.3)

We have framed the problem in terms of the Wilsonian effective action. It can equally well

be described in the language of the 1PI action, as discussed by Shifman and Vainshtein. We

can ask, for example, for the coefficient of W 2
α in this action, defined, say, in terms of the

– 6 –



J
H
E
P
0
5
(
2
0
1
1
)
0
6
1

vector three point function at energy scale µ2 ≪ m2
phys. Then, as in textbook arguments,

in Γ logs of µ2 must be logs of µ2/m2
phys, so the beta functions are the same. However, our

definition of the “physical” scale is arbitrary. Even if we think of the Pauli-Villars field as

physical (we will sensibly think of regulator masses as physical shortly), Z−1mhol is not

necessarily the location of the pole in the propagator, beyond low orders in perturbation

theory. We can redefine mphys by a function of g2, correspondingly redefining the beta

function beyond two loops. This is the usual issue of scheme dependence and is equivalent

to a redefinition of g.

NSVZ first considered the non-abelian case, motivated by observations about instan-

ton computations. Non-abelian theories introduce new complications, as regularization

is more complicated. ’t Hooft regulated his instanton computation by introducing Pauli-

Villars fields. Often discussions of instanton computations in supersymmetric theories, and

of the NSVZ beta function, are predicated on such a regulator, with statements like “the

scheme in which the NSVZ beta function is exact is the Pauli-Villars scheme.” But Pauli-

Villars regulators are problematic in gauge theories. In the background field method, as

used by ’t Hooft, one divides the fields into background plus fluctuation. This formulation

preserves a gauge invariance under which the fluctuating fields transform homogeneously,

and the background fields transform inhomogeneously. This guarantees that the effective

action, as a function of the background fields, is gauge invariant. This remains true in the

presence of the regulator fields (one massive field for each fluctuating field). If one works

with component fields (in Wess-Zumino gauge), the regulator fields break supersymmetry

and BRST invariance. Just as important, as is well known, they do not tame ultraviolet

divergences beyond one loop, and must be supplemented by higher derivative regulators.

So much more is required to specify both the regulator and the renormalization scheme (re-

member that the goal is to make a statement valid to all orders in perturbation theory). The

breaking of supersymmetry can be avoided by working in a supersymmetric background

field formalism, in which one can also introduce higher derivative regulators [10, 11]. But

the regulator fields still spoil the BRST symmetry, which must be enforced order by or-

der by choice of counterterms for the interactions of the fluctuating fields. Moreover, the

(“bare”) lagrangian is not manifestly holomorphic as a function of the gauge coupling or

the regulator masses, so additional arguments are required to account for the holomorphy

of the Wilsonian action.5

However, in many cases, a more satisfying regulator is available, at least in pertur-

bation theory [19, 20]. This regulator is simple, supersymmetric, and BRST invariant.

Holomorphy, as we will see, is readily understood. Starting with one of the finite super-

symmetric theories with N = 2 or N = 4 supersymmetry, one can add mass terms so as to

obtain regulated versions of a large set of vector-like supersymmetric theories. The masses

constitute spurions, not only for broken U(1) symmetries, but also for (super) conformal

invariance. Suitable quantities must be holomorphic in these mass terms. We review these

constructions, in order to apply them to the problems which interest us here. Our point of

5In the formalism of [10, 11], for example, the B ghost terms violate holomorphy. One can write the

effective action in terms of holomorphic combinations of parameters, but other subtleties remain. Still,

given our observations below, one expects that it is possible to resolve all of these issues.

– 7 –
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view will be slightly different than that of [19, 20], and provides, we believe, a somewhat

simpler picture.

We will focus mainly on the N = 4 theory. This theory has three adjoint chiral fields,

Φi, i = 1, 2, 3, and an SU(4) R symmetry. If one writes the lagrangian in a fashion so that

(in terms of component fields) this symmetry is manifest, there is a factor of 1/g2 in front

of the kinetic terms for the chiral fields, but also a 1/g2 in front of the superpotential term

for the adjoints. In a presentation in N = 1 superspace:

L =

∫

d4θ
1

g2
Φ†

iΦi −
1

32π2

∫

d2θ

(

8π2

g2
+ iθ

)

W 2
α +

∫

d2θ
1

g2
Φ1Φ2Φ3 + c.c. (2.4)

In this form, the action is not manifestly holomorphic in τ .6 In order to exploit the power

of holomorphy, it is necessary to rescale the adjoints so that there are no factors of g in

the superpotential; for example

Φi → g2/3Φi. (2.5)

We can add mass terms for the Φi’s (for simplicity, we will take all masses the same, but

this is not necessary, and allowing them to differ allows one to consider other questions):

L =

∫

d4θ
1

g2/3
Φ†

iΦi−
1

32π2

∫

d2θ

(

8π2

g2
+iθ

)

W 2
α+

∫

d2θ(Φ1Φ2Φ3+mholΦiΦi+c.c.). (2.6)

We will refer to this as the holomorphic presentation of the N = 4 theory.

Working with the holomorphic presentation, holomorphic quantities calculated at low

energies, and in particular the gauge couplings in the Wilsonian action for the gauge fields

(to be defined shortly) are necessarily holomorphic functions of τ and mhol. Note that in

this tree level lagrangian, the adjoints each have tree level mass g2/3mhol (this is precisely

the relationship anticipated by NSVZ, eq. (1.7)). In the presence of the mass term, the

full theory remains ultraviolet finite; mhol may be thought of as a spurion, not only for

breaking of a U(1)R symmetry, but also for (super) conformal invariance. Holomorphic

quantities must be holomorphic functions of mhol. Fixing their mass dependence, say, by

U(1)R transformation properties, fixes their behavior under conformal rescalings. This

regulator also allows the definition of a Wilsonian action.

This setup leads to a simple understanding of the holomorphic beta function. The main

features can be seen through simple Feynman graph and renormalization group analysis.

The simplest object to consider is the renormalization group invariant scale. This is given

by standard renormalization group arguments and anomaly considerations as:

Λ3N = m3Ne
− 8π2

g(m)2
−iθ 1

g2N
= (mhol)

3Ne
− 8π2

g(m)2
−iθ
, (2.7)

through two loop order. Now m here is the matching scale between the low and high energy

theories, which we have seen, to lowest order in perturbation theory, is g2/3mhol. So we see

6One might wish to replace 1/g2 by λ in W , and treat λ as a holomorphic parameter. But only for

λ = 1/g2 is the theory finite, so further regularization is required before one can discuss holomorphy in τ

and λ.

– 8 –



J
H
E
P
0
5
(
2
0
1
1
)
0
6
1

that Λ is, to this order, a holomorphic function of mhol. This must persist to all orders of

perturbation theory about the instanton.

It is perhaps more instructive to use this regulator to define a Wilsonian action, and a

Wilsonian renormalization group for the pure supersymmetric gauge theory. We can define

a Wilsonian renormalization group transformation as the difference of the couplings in the

1PI actions computed with masses m1 and m2, m1 > m2. This is precisely the contribution

to the Wilsonian action obtained by integrating out physics between scales m1 and m2.

For example, the coefficient of W 2
α is obtained by computing a suitable 1PI coupling at a

scale µ2 ≪ m2
1, m

2
2, including terms in the beta function through two loops, is:

8π2

g2(µ)
=

8π2

g2(mi)
+ 3N log(µ/mi) − 2N log(g(µ)/g(mi)). (2.8)

The left hand side must be the same for two choices of regulator mass, m1,m2. So

8π2

g2(m2)
=

8π2

g2(m1)
+ 3N log(m2/m1) − 2N log(g(m2)/g(m1))). (2.9)

Now if we take

m1 = g2/3(m1)m
(1)
hol; m2 = g2/3(m2)m

(2)
hol, (2.10)

we have, through this order, that the transformation is holomorphic as a function of τ, m
(1)
hol,

and m
(2)
hol, i.e

8π2

g2(m2)
=

8π2

g2(m1)
+ 3N log(m

(2)
hol/m

(1)
hol) (2.11)

This must continue to hold through higher orders.

Note that we took the masses to be g2/3(mi)m
(i)
hol; more precisely, these are the masses

appearing in the propagators in perturbation theory. In perturbation theory, g2 is cor-

rected in each order. Correspondingly, one must introduce counterterms for g2 and for the

masses of the various fields. Eq. (2.10) is a renormalization scheme, which specifies the

counterterms. We will see that in this scheme, the NSVZ formula for the β function holds,

and the leading results for certain instanton expressions are exact. But one can equally well

choose other schemes, and obtain different exact results. Alternatively, one can attempt a

more physically motivated scheme, such as an “on shell” scheme for the regulator mass.

It is worth clarifying the distinction between the Wilsonian action and the “1PI” action.

Having defined the Wilsonian action at scale m2, say, amplitudes in the low energy theory

are computed with the cutoffs m2 and g2m2, and are not holomorphic; e.g. as a function

of momentum, they may involve log(|m2|/p2). As we will comment later, we might expect

that the instanton scale parameter, ρ, is similar to the momentum, and so g2(ρ) factors

might appear modifying the measure for the instanton collective coordinates in general

renormalization schemes. However, we will also see that this is not critical to building an

argument that ∆ is not renormalized in perturbation theory about the instanton.
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3 The NSVZ β-function

We can reverse our earlier analysis of the holomorphy of the gauge couplings to understand

the question of exact β-functions. Consider a Wilsonian renormalization group transfor-

mation involving two N = 4 regulator masses, m
(1)
hol and m

(2)
hol. Then taking, at each order

in perturbation theory, the mass appearing in the propagator to be

mi = g2/3(mi)m
(i)
hol (3.1)

yields a Wilsonian renormalization group transformation:

8π2

g2(m2)
=

8π2

g2(m1)
+ 3N log(m2/m1) − 2N log(g(m2)/g(m1))). (3.2)

No further corrections can appear; this would be inconsistent with holomorphy. Corre-

spondingly, the β function is that obtained by NSVZ:

βNSV Z(g) = − g3

16π2

3N

1 − 2N g2

16π2

. (3.3)

If we were to adopt a scheme in which, for example,

mi = g2/3(mi)f(g)m
(i)
hol (3.4)

where f(g) = 1 + ag2(mi)
16π2 + . . . , the one loop expression would be altered, and holomorphy

would necessarily imply additional corrections in eq. (3.2) (at three loops and beyond).

Indeed, in this case the beta function would be given by:

β(g) =
βNSV Z(g)

1 + βNSV Z
f ′

f

. (3.5)

Note, for example, that for simple choices of f , the location of the pole (2Ng2

16π2 = 1) in

the NSVZ expression moves (and can even be eliminated). Of course, because it occurs at

strong coupling, the significance of this pole is questionable in any case.

In some sense, the scheme of eq. (2.10) seems particularly well-motivated with the N =

4 regulator. But more careful consideration suggests that the scheme, beyond the leading

order, is rather arbitrary. g2/3mhol is not, in an exact sense, a particularly significant

physical scale. It is not the location of the pole in the adjoint propagator, for example.

(Given that the theory is finite, we can think of the theory with particles with mass

parameterm1 as defining the macroscopic theory; the mass of the adjoint field is then a well-

defined physical quantity). For example, already at one loop, there is a finite wave function

renormalization for the Φi fields, which in turn corrects the propagators. On shell one finds:

Z = 1 +
√

3πN
g2

16π2
. (3.6)

Such an on-shell scheme would appear physically well motivated. We could give a prescrip-

tion for determining the function f in this case, order by order in perturbation theory.
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Actually, there is a larger set of schemes, since we could reasonably introduce separate

masses for each of the Φi fields, and we could also do our initial rescalings so that

mi = gai(mi)m
(i)
hol (3.7)

where

∑

ai = 2. (3.8)

In sum, the NSVZ scheme is mathematically simple, but not tied to any compelling physical

consideration.

These observations about the NSVZ beta function, in turn, clarify certain aspects of

the non-renormalization theorems for the instanton computation; after all, the NSVZ beta

function was motivated by the instanton computation. The leading instanton result is

proportional (in the case of the pure gauge SU(N) theory) to

M3N
PV e

− 8π2

g2 −iθ 1

g2N
, (3.9)

where MPV is the Pauli-Villars regulator mass. NSVZ argued that this result was subject

to a non-renormalization theorem; all perturbative corrections to the leading order should

vanish. If this is the case, and this quantity is renormalization group invariant, then the

NSVZ form follows. Proving the non-renormalization theorem, however, is subtle. It does

not follow from holomorphy, and we have argued that conventional Pauli-Villars regulators

must, in any case, be supplemented by additional counterterms. On the other hand, the

N = 4 theory provides a regulator which respects all of the symmetries, and we can

reexamine this question in this context.

As we have noted, with a conventional regulator, such as supersymmetric dimensional

reduction or Pauli-Villars, the question of scheme is rather obscure. While the one loop

structure of the Pauli-Villars regulator seems simple, the regulator must be supplemented

by higher derivative interactions, as well as finite counterterms to restore BRST invariance.

All of this is much simpler in the N = 4 deformed theory. The regulator is supersymmetric

and holomorphic, and we have seen that a Wilsonian renormalization group analysis is

readily implemented. But we also see that while holomorphy is readily understood, one

can define a multi-parameter set of renormalization schemes. Perfectly supersymmetric

schemes will lead to different expressions for the β function, and in general will lead to

corrections in powers of g(m) to the instanton measure (as well as in correlation functions

for fixed values of the collective coordinates).

The argument for the lack of corrections to the instanton computation in perturbation

theory which we provide in the appendix does not require any such complicated consider-

ations of non-renormalization theorems for particular schemes. It is closer in spirit to [7],

with the techniques of NSVZ providing reassurance that holomorphy is a reliable guide.

Finally, we should connect our analysis with that of [19, 20]. To do this, we can define

a more general set of rescalings of the fields, for which

Φi → Φig
2/3+α. (3.10)
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In order to avoid anomalous Jacobians we also rescale the vector multiplet as V → V g3α.

In this case, the coefficient of the Φ kinetic term is

g−2/3+2α. (3.11)

Correspondingly, writing the mass term in the superpotential as

mαΦiΦi, (3.12)

we have that the physical regulator mass (at tree level) is

m = g2/3−2αmα. (3.13)

Correspondingly, mα is related to the quantity mhol we have defined by

mα = g2αmhol. (3.14)

The coupling evolution in this scheme is also different:

8π2

g2(m
(2)
α )

=
8π2

g2(m
(1)
α )

+ 3N log(m(2)
α /m(1)

α ) − 6Nα log

(

g(m
(2)
α )

g(m
(1)
α )

)

. (3.15)

The analysis of ref. [19, 20] invokes a particular choice of α, α = 1/3, corresponding to a

canonical kinetic term (note that this corresponds to canonical normalization for the vector

multiplet). In this case, the mass appearing in the propagator, at tree level, is mα. They

consider a new coupling:

8π2

ĝ2(mα)
=

8π2

g2(mα)
+ 2N log g(mα) (3.16)

and show (their eq. (2.10)), that the running of ĝ2 is saturated by the one loop result. In

the language we have developed here, this is easily understood; if we write the theory in

the holomorphic presentation, with holomorphic mass mα, then we need to take g = ĝ as

given by equation (3.16). In terms of the original coupling, g, we obtain the NSVZ beta

function. But we see, again, there is nothing particularly special about this result; we can

define such a coupling for any choice of α (as well as more general transformations). Once

more, what is critical is the holomorphy of the Wilsonian action as a function of mhol in

eq. (2.6). Again, it should be stressed that the location of the pole in the propagator at

tree level is not a physical scale; in the canonical form, this scale coincides with the mass

in the lagrangian, and this has a certain elegance, but, as in the holomorphic presentation,

choosing this mass scale to define the beta function is a choice of scheme. There are an

infinity of possible schemes, each leading to an exact beta function.

3.1 N=2

It is interesting to contrast the N = 4 case with the case of the finite N = 2 theory

as regulator. Here we can consider a variety of low energy theories. In the microscopic

theory, one has a single adjoint and N hypermutiplets in the N representation, N in the N̄ .
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One can give mass to various combinations of the hypermultiplets, obtaining different low

energy theories. In this case, unlike that of N = 4, the adjoint does not require rescaling in

order to obtain a holomorphic form for the action. As a result, the adjoint mass appearing

in loops is g2mhol, while those of the hypermultiplets are simply m2
hol. One again sees

that in terms of mhol, the renormalization of the coupling is saturated at one loop, and

the NSVZ beta function is obtained if the cutoff is taken to be precisely g2mhol for the

adjoints, mhol for the hypermultiplets.

4 Strong coupling and infrared divergences

In QCD, it is not true that one can simply compute any quantity at short distances.

Indeed, this is the essence of the usual operator product expansion analysis. If we study a

correlation function of two operators:

C(x) = 〈O(x)O(0)〉 (4.1)

this can be replaced, as x→ 0, by

C(x) =
∑

n

cn(x)〈O(n)(0)〉. (4.2)

The cn’s, the coefficient functions of the operator product expansion, can be calculated

systematically in asymptotically free theories. But the computation of the operator matrix

elements, 〈On〉 is, in general, a strong coupling problem. This is familiar, not only from

perturbation theory, but from instanton computations in QCD, which typically are infrared

divergent, even for small |x|. For correlators at small distances, these divergences can be

understood as arising from the computation of the operator matrix elements [25].

In fact, there are quantities which are manifestly controlled by the ultraviolet, even in

pure gluodynamics. Consider, for example, the correlator

Ω(x) = 〈O5(x)O5(0)〉; O5 = λσµνλFµν . (4.3)

The operator product includes terms

g4(x)

|x|4 (λ(0)λ(0)) (λ(0)λ(0)) +
Λ6

|x|4 I. (4.4)

The first term is the most singular term in perturbation theory; the second is generated by

instantons [25, 26]. The second of these references explains in detail why the one-instanton

computation of the coefficient function of the unit operator is reliable. The matrix element

of the four gaugino operator receives contributions from instantons and potentially from

dilute gas corrections. As explained in [25], the dilute gas corrections do not correct the

second term (there are corrections from perturbation theory around the instanton to the

coefficient, in powers of g2(x)). So for this Green’s function, difficult non-perturbative cor-

rections are suppressed by two powers of g2(x), and a reliable computation is possible. Nec-

essarily, any sensible infrared regulator should obtain the same result for this Green’s func-

tion as for the theory without a regulator. This will be an important test in what follows.
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So one might say the NSVZ discrepancy is simply a strong coupling problem, and one

should not be surprised. But it would be satisfying to have a deeper understanding. NSVZ

argued that the leading result for ∆ is exact, based on reasoning about the structure of

perturbation theory. However, their arguments require a regulator which respects certain

symmetries and in addition assumes the absence of infrared divergences. In the absence of

infrared divergences, holomorphy is itself enough in any case.

The perturbation expansion of ∆ about the instanton is purely formal, as there is no

small scale. It is easy to see that divergences in higher orders, could potentially lead to

contributions which, while formally suppressed by g2, are in fact of order one. Moreover,

these would-be contributions are holomorphic. In the next order in perturbation theory,

one might worry that there are contributions of the form

g2

∫

dρ

ρ
= g2 log(M/λ). (4.5)

Here M is an ultraviolet cutoff, and λ is an infrared cutoff. λ is necessarily proportional

to the renormalization group invariant scale,

λ = aΛ ∼ aMe
− 8π2

g2 , (4.6)

so such a contribution would be of order 1. Because it has no g dependence, it is compatible

with holomorphy.

This sort of breakdown of perturbation theory is familiar in quantum field theory in

other contexts. For example, in ordinary QCD, the perturbation expansion of the free

energy is infrared divergent, beginning at four loop order. These divergences are believed

to be cut off by the mass scale of a three-dimensional version of QCD, with coupling g2T .

Starting at this order, the perturbation expansion is at best formal, in powers of g2T/g2T .

It may seem, at first sight, farfetched that holomorphic expressions should emerge

from expressions which combine holomorphic and anti-holomorphic variables. But this is

already the case in ordinary perturbation theory. Consider a Wess-Zumino model with a

light field, φ, a heavy field, Φ, with mass m, and a cubic coupling λφ2Φ. Integrating out

Φ, yields a φ4 term in the superpotential; the corresponding Feynman graph behaves as

λ2m∗

p2 + |m|2 , (4.7)

and is holomorphic in λ and m as p→ 0.

We will argue in the appendix that it is likely that all perturbative contributions do can-

cel, and this is not the source of the discrepancy. To make this claim, we first establish that

perturbation theory about the instanton solution is infrared finite. Then we invoke holo-

morphy, to prove that there cannot be g2-dependent corrections to the lowest order result.

5 The dilute gas

While perturbative corrections to the instanton do not account for the discrepancy, it is

well known that the instanton (with all of its perturbative corrections) does not exhaust
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the contributions to correlation functions in the sector with unit topological charge. At

the least, one must consider the dilute instanton gas. It is not possible to give a rigorous

definition of these contributions. But if they are present, in the case of the pure gauge

SU(N) theory, they behave as:

Λb0(Λ∗Λ)nb0

∫

dρρ2nb0−1 (5.1)

where in the case of SU(N), b0 = 3N and ρ is shorthand for a multidimensional integral

over approximate moduli rescaling the different instantons and anti-instantons. Assuming

that the infrared divergences are cut off at a scale ρ ∼ λ−1, the result is proportional to:

Λb0 (Λ∗Λ)nb0

λ(2n)b0
, (5.2)

i.e. it is of the same form, again, as the leading order result.

The sorts of arguments we have made in the appendix for perturbation theory will not

apply to these configurations. Consider, say, a configuration with two instantons and an

anti-instanton. This configuration is not a solution of the equation of motion, and breaks

all of the supersymmetries and superconformal symmetries. When these objects approach

one another, the various fermion zero modes will be lifted. In the strongly coupled theory,

it is not clear that there is any way to perform this computation in a systematic fashion.

It is hard to see a reason of principle that such contributions should vanish, and, as we

have seen, any non-vanishing correction would represent an order one contribution to the

leading instanton result.

In a strongly coupled theory, of course, isolating and defining the dilute gas contri-

butions is problematic. But this very issue indicates that there is no reason to trust the

leading semiclassical analysis. Stated more generally, one expects that the contribution to

∆ of the unit topological charge sector is not exhausted by the standard single instanton

solution. One might expect that if one has a procedure to define the dilute gas contribu-

tions, one will find a contribution of order one; alternatively, the dilute gas contributions

might vanish, but because of the infrared sensitivity of the theory, the single instanton

contribution might be modified from its naive value. In the next two sections, we will

consider two infrared regulators. In both cases, because the theory is well-behaved in the

infrared, holomorphy does mean that there are no dilute gas contributions. In the “weak

coupling calculation” (small quark mass, analytically continued to large quark mass), the

origin of the failure of the strong coupling calculation is obscure. In the case of the theory

compactified on a circle, one can see more directly the source of the problem, as one can

identify, for large compactification radius, β, the would-be strongly-coupled instanton, and

the calculation is under control both in the small and large β regime.

6 Regulating the infrared

The discussion of the previous section demonstrates that one cannot assess the validity of

the NSVZ calculation without a suitable infrared regulator (we have already encountered
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the problem of ultraviolet regularization). There are two such regulators which have been

considered in the literature. One, due to Seiberg, involves first studying a supersymmetric

gauge theory with additional quark fields with small masses. In this theory, weak coupling

computations are possible. Using holomorphy and symmetries, one can then continue to

large mass. While this argument is usually used to compute the gaugino condensate, it is

also possible, as we explain here, to compute Green’s functions like ∆(x), but not Ω(x)

(eq. (4.3)). A second regulator is achieved by compactifying the Euclidean time direction

on a circle of radius β, with periodic boundary conditions [24, 27]. This system has been

studied in the limit of small β, where it has been shown that one obtains the correct value

of the gaugino condensate. But it is possible to study, as well, Green’s functions like ∆

and Ω, and determine whether they agree with the weak coupling result, and if so the

origin of the discrepancies with the strong coupling computation. We consider both of

these questions in the next subsections.

6.1 Instantons in the weak coupling theory

Before continuing further with the strong coupling problem, it is useful to review some

aspects of instanton effects in weak coupling theories. There is a large literature on this

subject, beginning with [13]; the main points are thoroughly reviewed and developed in [16,

17]. Our main purpose here is to point out that arguments close to those of NSVZ are

applicable to these systems, and, because they admit a systematic weak coupling analysis,

they can be readily tested. Then we discuss the correlator ∆(x), explaining that, again, it

must be a constant, and that, as argued by NSVZ, it must factorize for large x as a power

of the gaugino condensate. We stress that, as a result, the issue in NSVZ is not merely the

question of factorization, but the value of ∆ itself.

To compute the gaugino condensate [7], one works in a theory with, say, gauge group

SU(N) and Nf quark flavors, Qf and Q̄f . One adds a mass term:

W = mholQ̄fQf (6.1)

(to simplify the writing we will take all of the masses the same, but this is not necessary).

At low energies (well below the cutoff, M), the mass is renormalized due to the wave

function renormalizations of the Q’s:

K = ZQfQ
†
f ; Z =

(

g(mphys)

g(M)

)−2N2
−1

Nb0

, (6.2)

where b0 = 3N −Nf . The physical and holomorphic masses are related by

mphys = Z−1mhol. (6.3)

For small mass, the quarks have large vev’s and the system is weakly coupled. In addition,

the discrete R symmetry of the system is spontaneously broken. One can calculate a

variety of gauge invariant correlation functions. These include the gaugino condensate, as

well as correlation functions with more gauginos and with scalar fields. Arguments based

on holomorphy are reliable in these models (and have been verified in some cases [16, 17]).
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There are two related issues with the NSVZ program which are realized and readily un-

derstood in weakly coupled situations. The first is the extent to which the result of the com-

putation is not renormalized, and the second is the meaning of the exact (NSVZ) β function.

To address these, it is interesting to do the following exercise, essentially a minor

extension of the analysis in [7, 13]. We take the large mass limit of the weak coupling

result for 〈λλ〉, and check matching to the next to leading order. This is a somewhat

non-trivial check of holomorphy, as it is crucial that there be no factors of log(|mphys|) in

the expression; these would arise from g2(|mphys|) in a renormalization group analysis.

The basic idea of [7, 13] is to note that in the low energy theory,

〈λλ〉 = Λ3
LE . (6.4)

From the renormalization group,

Λ3
LE = m3

physe
− 8π2

Ng(mphys)2
1

g(mphys)2
. (6.5)

Now one writes:

8π2

g2(mphys)
=

8π2

g2(M)
+ b0 log(mphys/M) − b1

b0
log

(

g(mphys)

g(M)

)

, (6.6)

where b0 = 3N −Nf as before and b1 = 2Nb0 − 2
Nf

N

(

N2 − 1
)

. So one immediately finds:

〈λλ〉 = (mphys)
Nf /N (Λ)

3N−Nf
N (6.7)

with all quantities evaluated through second order. The scale Λ is defined by

Λb0 = M b0e
− 8π2

g(M)2
1

g(M)2N
. (6.8)

There are no factors of g(|mphys|) on the right hand side of eq. (6.7); indeed, the structure

of the result is fully determined by symmetries and holomorphy. This must persist through

higher order. We naturally identify the coefficient of m
Nf /N
phys with the holomorphic Λ.

Let’s turn to the question of correlators and factorization. Consider correlators of

the form

Gk(x1, ...xk) = 〈(λ(x1)λ(x1)) . . . (λ(xk)λ(xk))〉. (6.9)

We can first ask what sorts of instanton configurations contribute to Gk. It is helpful,

here, to consider the anomalous U(1) under which all of the scalar fields are neutral. It

is necessary to assign Λ charge 2/(3N − Nf ). Noting that the nI instanton amplitude is

proportional to Λb0nI , it follows that Gk, which carries charge 2k, gets contributions from

k instanton configurations.

As in the strongly coupled case, Gk must, in fact, be independent of position. In

the weakly coupled theory, it can be evaluated by taking the coordinates far apart. Since

the gauge symmetry is completely broken, almost all propagators fall to zero exponentially
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with distance, and the k instanton calculation factorizes into a product of k single instanton

contributions. In other words, in the weak coupling theory,

Gk(x1, . . . , xk) = 〈λλ〉k. (6.10)

This is precisely the factorization discussed by NSVZ. Now, however, the discrete symmetry

is spontaneously broken from the start; there is no sum over different vacua. Note also that

it is clear that the discrepancy between the strongly coupled and weakly coupled instanton

computations is not a consequence of factorization; it holds already at the level of the full

Green’s function.

6.2 The compactified theory

An alternative regulator is provided by the compactification of the theory on R3 ×S1 [24].

This is essentially a three dimensional gauge theory with scalars (A4) in the adjoint repre-

sentation. The theory has a classical flat direction, in the case of SU(2), in which

A4 = v
σ3

2
. (6.11)

Dualizing the gauge field allows one to write the theory in terms of a theory with four

supersymmetries, and a chiral field, Φ, whose scalar components consist of v(x) and the

dual of the gauge field. In this theory, the simplest instantons are (from a four dimensional

perspective) static magnetic monopoles. The authors of [24] showed that monopoles gener-

ate a superpotential for Φ. In the case of SU(2), there are actually two types of monopoles,

the usual BPS monopole, and a transformation of the monopole by

U = e−i
πx4

β
σ3 . (6.12)

This is referred to as the “KK monopole”. The potential has two minima, corresponding

to breaking the Z2 symmetry. In each vacuum, one can calculate 〈λλ〉 by summing the

contributions from these two monopoles (each of which has two zero modes),

〈λλ〉 = 〈λλ〉BPS + 〈λλ〉KK , (6.13)

remarkably obtaining the weak coupling result. As a consequence of holomorphy, the lead-

ing result is exact if expressed in terms of the holomorphic coupling and cutoff. However,

various parts of the computation can (and do [28]) receive corrections in powers of g2. In

principle, these can depend on βv (a constant in the vacuum), and βM , where M is the

cutoff; these corrections cancel in the total condensate.

But to understand the failure of the strong coupling calculation, it is more interesting

to consider the computation of

∆(x) = 〈(λ(x)λ(x)) (λ(0)λ(0))〉. (6.14)

This will be generated by instantons which can be described as monopole pairs. We can

label the three types of solution as BPS −BPS, BPS −KK, and KK −KK. Consider,
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first, the limit |x| ≫ β. Then ∆ will be generated by configurations where one monopole

is near x and one near 0. Clearly for large separations we have

∆ = 〈(λλ)(λλ)〉BPS−BPS + 〈(λλ)(λλ)〉BPS−KK + 〈(λλ)(λλ)〉KK−KK (6.15)

= 〈λλ〉〈λλ〉.

To compare with the strong coupling calculation, we are interested in the opposite

limit, |x| ≪ β. Note that we can take this limit while keeping β ≪ Λ−1, so the coupling is

still weak. Because the correlation function is a constant in x, the result obtained by the

simple, factorized computation still holds in this other limit.

This raises a puzzle, but also provides part of the resolution of the instanton paradox.

Consider the three types of instanton more carefully. The BPS-KK instanton is known

explicitly from finite temperature studies [29, 30]. If one takes the limit β → ∞, this

solution reduces to the infinite volume solution. The collective coordinates are the six

coordinates describing the location of the monopoles, as well as two U(1)’s. As β → ∞,

this solution maps to the usual instanton [29, 30]. The ρ collective coordinate (up to a

factor of β) measures the separation of the monopoles; the position is a linear combination

of the average of the location collective coordinates, plus a location in x4. The remaining

coordinates map into the rotational collective coordinates.

Much is known about the BPS-BPS solution [31], though an analytic form is not avail-

able. Nevertheless it has some obvious features, relevant to the questions we are addressing

here. Most important, it is independent of x4. So it cannot lead, in general, to O(4) in-

variant expressions for Green’s functions. On the other hand, its contribution to 〈λλ〉 is

a constant. So this is a contribution to 〈λλ〉 which survives in the large β limit. At the

same time, this instanton must not contribute in this limit to correlation functions like

Ω(x) (eq. (4.3)). We will see in the next subsection that this is the case. The KK −KK

instanton is obtained by performing a transformation on the gauge field by the transfor-

mation function U of eq. (6.12). While this is not precisely a gauge transformation, the

gauge invariant Green’s functions under consideration (Green’s functions of local operators,

not involving Wilson lines) are unchanged, so the KK −KK instanton contributions are

identical to the BPS −BPS contributions.

The BPS-KK instanton, while formally identical to the infinite volume theory at large

β, also makes a different contribution than that found by NSVZ. This is because the limit

β → ∞ does not commute with the collective coordinate integrals. Simple dimensional

analysis indicates how this can happen. One can expand the integrand in powers of 1/β,

for small x. However, upon integration, simply on dimensional grounds, the result, if

non-zero, must be (infrared) divergent, cut off at x ∼ β.

We can summarize as follows. If one works in the formal infinite volume limit, there

is no systematic computation of ∆; the infrared is not under control, and there is no

approximation scheme. In a situation where systematic computations are possible, an

infrared cutoff is present. There are contributions to ∆ which survive in the limit the

cutoff is taken to infinity, So the formal infinite volume result has, as expected, infrared

sensitivity.
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6.3 Aspects of the instanton computation in the compactified theory

The first question one must ask is in what sense compactifying the theory on a circle

provides an infrared regulator. Gauge theories at high temperatures exhibit infrared diver-

gences in perturbation theory connected with the fact that the modes with zero Matsubara

frequency are governed by a three dimensional field theory. Feynman diagrams for the

free energy, for example, exhibit infrared divergences at four loop order. Feynman dia-

grams for (gauge invariant) correlation functions of bosonic operators can exhibit infrared

divergences, typically, again, at four loop order. There is no simple argument that these

divergences should cancel. Instead, it is generally believed that the divergences are cut off

by the mass-scale of the three dimensional theory. With periodic boundary conditions for

the fermions, new types of divergences can appear. One might anticipate cancelations in

certain correlators (e.g. lowest components of chiral fields). But in general, one does not

expect that such a regulator completely resolves the problems of the infrared.

That said, it is also well-known that the leading terms in the finite temperature in-

stanton computation in QCD are infrared finite. While to our knowledge the infrared

behavior of the perturbation expansion about the instanton has not been carefully studied,

we might expect infrared divergences to appear at some order as well. Our observations

below (and those of ref. [24]), presume that, for certain quantities which are protected by

supersymmetry and holomorphy, these divergences cancel. But this is a question worthy

of further study.

With this caveat, we consider some aspects of the instanton solution in the compactified

theory. First, we prove that each type of instanton contributes a constant to the Green’s

function ∆(x) (i.e. the contribution of each type of instanton is independent of x). We

mostly follow the standard argument, but we consider the constancy of the contribution

from each configuration. A similar argument is given in [24].

Note that there are three types of configurations: BPS − BPS, BPS − KK and

KK −KK. Let us choose one of them and let dµ denote the corresponding measure for

the collective coordinates. Then we need to calculate

∂

∂xαα̇

∫

dµλλ(x)λλ(0) ∼
∫

dµ
[

{Qα, Q̄α̇}λλ(x)
]

λλ(0) (6.16)

Using the fact that
[

Q̄α̇, λλ(x)
]

= 0, the integrand becomes

[

{Qα, Q̄α̇}, λλ(x)
]

λλ(0) = {Q̄α̇, [Qα, λλ(x)]}λλ(0) (6.17)

= {Q̄α̇, [Qα, λλ(x)] λλ(0)}.

Since the measure dµ is invariant under supersymmetry transformations, eq. (6.16) van-

ishes, which implies that the contribution of each gauge field configuration to the correlation

〈λλ(x)λλ(0)〉 is independent of x.

We now ask why the function ∆(x) can receive contributions at large β from the

BPS − BPS and KK − KK instantons, while the function Ω(x) does not. Here the

question is where the support of the zero modes and the classical solution lie. While the

BPS − BPS solution is independent of x4, the instanton and its associated zero modes
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have support on scale β. So as β → ∞, these functions fall off, at any given point, as

1/
√
β. So additional fields, as in eq. (4.3), result in suppression by powers of 1/β.

7 Conclusions

Supersymmetry has provided a tool with which to obtain a range of exact results in field

theory and string theory. Arguably the first inkling that one could obtain such results

was the work of NSVZ. They argued for two exact results in gauge theories. First, that

one could compute certain correlation functions exactly at weak coupling, and extend the

results to strong coupling; second, that one could obtain exact expressions for β-functions.

However, each of these results raised questions. As methods exploiting systematic weak

coupling expansions and holomorphy were developed, it became clear that the strong cou-

pling instanton computation was incorrect. This in turn called the exact β-function into

question; even without this issue, the meaning of the NSVZ beta function was obscure.

The β function is scheme dependent; in what scheme did the result hold?

In this paper, building on earlier work, we have provided answers to both questions.

For the NSVZ beta function, we have revisited the regulator of AHM. We have seen, first,

that if the theory is presented in a fashion which is manifestly holomorphic in the gauge

coupling and the regulator mass, the gauge coupling is manifestly holomorphic. Moreover,

in this setup, one can define a Wilsonian renormalization group and Wilsonian action, both

of which are holomorphic, and exhausted, as a result, by one loop corrections (plus possible

non-perturbative corrections).

For the problem of the instanton computation, we have noted, first, that infrared di-

vergences spoil arguments based on holomorphy for non-renormalization. Such corrections,

if present, either perturbatively or non-perturbatively, correct the leading term by effects

of order one. Thus it is necessary to perform the computations in a fashion that the in-

frared is regulated. Perhaps the most useful such regulator is provided by compactification

of one direction on a circle of radius β. Weak coupling, semiclassical calculations can

be performed both for small and large β (relative to the length scales in the correlation

functions). One can identify the instantons for this system, and one can consider a limit

which resembles the infinite volume theory in which the system is weakly coupled. One can

then see that the large β limit of the theory is singular, reflecting the underlying infrared

sensitivity of the system. Indeed, we have seen that there are three types of instanton.

For one, taking the limit of infinite β before performing the collective coordinate integrals

leads to an incorrect result. The other two solutions have vanishing support for finite |x| as

β → ∞, yet they make contributions to ∆(x) which survive in the limit. As we explained

in the introduction, all of this is as one should have expected. The fact that some subset

of corrections happen to vanish does not assure that the leading computation is reliable.

Perhaps this is the most important object lesson of this story: calculations in situations

where there is no systematic approximation, however pretty, can be terribly misleading.
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A Non-renormalization theorem for perturbation theory

In this appendix, we ask whether, in perturbation theory about the instanton of the strongly

coupled theory (the pure gauge theory), there might be terms of the type

g2

∫

dρ

ρ
(A.1)

or, more generally,

g2n

∫

dρ

ρ
lnn−1(ρM) (A.2)

spoiling the perturbation expansion and giving rise to order one corrections to the Green’s

function.

We will argue that there is a non-renormalization theorem. The argument has two

parts. First, we demonstrate that there are no infrared divergences in perturbation theory.

This argument is closely tied to the collective coordinate discussion of NSVZ. Having

established the absence of such divergences, we can then invoke holomorphy to argue for

the absence of corrections.

First, we need to understand the nature of the collective coordinates and the collective

coordinate measure. NSVZ [3] used symmetry arguments to assert that it is possible to

write an exact expression for this measure. We will argue that, at best, these statements are

scheme dependent. On the other hand, using the techniques of NSVZ, it is quite simple to

show that there are no infrared divergences in the perturbation theory about the instanton.

At the classical level, the collective coordinates include symmetries, conformal and su-

perconformal symmetries, which are not symmetries of the quantum theory. We have seen

that with AHM regulator, we can treat the regulator mass systematically as a spurion, not

only for conventional chiral symmetries, but for the full superconformal group; allowing for

transformations of the spurion, the theory is invariant. This allows us to describe possible

modifications of the measure in a systematic fashion, and to understand the implications

of the symmetry for Green’s functions.
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A.1 Collective coordinates for the instanton computation

The low energy theory, classically, possesses Poincare and superconformal symmetries.

The instanton breaks conformal invariance, translations, and half of the supersymmetry

and superconformal transformations. Correspondingly, one has collective coordinates:

1. translations, Pµ ↔ x0.

2. scale transformations: L↔ ρ.

3. supersymmetry transformations, Qα ↔ (θ0)α.

4. superconformal transformations, S̄α̇ ↔ (β̄)α̇.

We are interested in the collective coordinate measure, and the dependence of Green’s

functions (for fixed values of the collective coordinates) on the collective coordinates. If

both of these separately are unchanged in perturbation theory about the instanton, clearly

there is no correction, but the actual requirement is weaker. Indeed, from our discussion of

scheme dependence, we see that at the very least any statement about the exactness of the

measure or the Green’s function is contingent on a renormalization scheme. We will see

shortly that, because there are no infrared difficulties in the computation, holomorphy is

enough to insure the absence of corrections to the final result. So we will confine ourselves

to a few remarks about the measure.

In the low energy theory. the R symmetry and the conformal invariance are anomalous.

In the full theory, these symmetries are restored provided one properly transforms the

spurion. The measure:

d4x0d
2θ0d

2β̄
dρ

ρ
(Λρ)b0 . (A.3)

respects the full set of symmetries, where Λ is the holomorphic scale:

Λb0 = mb0e−τ . (A.4)

Exactness of the measure does not follow simply from conformal invariance; if the measure

were multiplied by

f(g(ρ)) = 1 + a
g2(ρ)

16π2
+ . . . , (A.5)

it would still respect the conformal symmetry. Such terms, and similar terms in the mea-

sure, would have the potential to introduce infrared divergences of the type we have dis-

cussed. NSVZ provided arguments based on the structure of the Feynman graph expansion,

that eq. (A.3) is exact. Our arguments below provide support for the idea that this state-

ment holds, at least in some suitable renormalization scheme. But we will see this is not

of great importance.
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A.2 Perturbation theory around the instanton

The procedure for computing correlation functions can then be summarized simply. Again,

we specialize to SU(2) and study the correlation function

∆(x1, x2, θ1, θ2) = 〈W 2
α(x1, θ1)W

2
β (x2, θ2)〉. (A.6)

While we are ultimately interested in the lowest component of ∆, for fixed values of the

collective coordinates, higher components will be of interest. First, note all components of

this Green’s function vanish in ordinary perturbation theory. This follows from

1. The general form of such chiral Green’s functions [32].

2. The chirality properties of the operator (i.e. the fact that the Green’s function carries

charge 4 under the anomalous U(1) symmetry).

In a component calculation, the perturbative vanishing of the higher components of the

correlation function results from cancelations between the F 2
µν and FF̃ correlators, and the

λ∂µσ
µ∗λ∗ correlators.

In order to compute the Green’s function of interest (the lowest component of ∆), we

can, following NSVZ, proceed as follows:

1. Compute ∆ for θ0 = β̄ = 0, general ρ and instanton coordinate 0. While in principal

one wants the general expression, it is in fact only necessary to compute the θ2
1θ

2
2

component of ∆.

2. Act on the result with

eiP
µxµ

0 eiθ0Qeiβ̄S̄ . (A.7)

3. Integrate over the result with the measure of the previous section, possibly with

corrections in powers of g2(ρ).

The operation of step (2) can be implemented, alternatively, by noting that the final

result must be supersymmetry invariant. Examining the supersymmetry transfor-

mation properties of the collective coordinates, one sees that one should make the

replacements, in the correlators of point (1) above:

θ → θ − θ0 − (xµ − xµ
0 )σµβ̄. (A.8)

Let’s review how this works for the leading order instanton computation. We have, in

the case of SU(2):

W 2
α(x1, θ1) = θ2

1

ρ4

((x1 − x0)2 + ρ2)4
. (A.9)

Making the replacements of eq. (A.8),
∫

dρd4x0d
2θ0d

2β̄〈W 2
α(x1, θ1)W

2
β (x2, θ2)〉 (A.10)

=

∫

d4x0
dρ

ρ5
(Λρ)6(x1 − x2)

2 ρ4

((x1 − x0)2 + ρ2)4
ρ4

((x2 − x0)2 + ρ2)4
.
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The x0 integral is straightforward (it can be performed by introducing Feynman parameters,

for example), and yields

∫

dρdα α3 (1 − α)3(Λρ)6
(x1 − x2)

2ρ3

((x1 − x2)2α(1 − α) + ρ2)6
. (A.11)

Certain features of this result should be noticed. One might have expected, from ex-

perience with correlation functions involving fermions in the fundamental representation,

that the expression would be infrared divergent; on dimensional grounds, one might have

expected to encounter
∫

dρ/ρ. This does not happen because of the factors of (x1 − x2)
2

appearing in the numerator of this expression. As we now explain, this is general; as a

consequence of symmetries, the correlation function vanishes as x1 → x2. This guarantees

the good infrared (large ρ) behavior of the correlation function. The absence of infrared di-

vergences permits the use holomorphy to establish the non-renormalization theorem, since,

in the absence of infrared divergences, corrections in (inverse powers of) τ are forbidden.

To see that this feature persists in perturbation theory about the instanton, we first

understand the vanishing of the Green’s function as x1 → x2 another way. Acting as in

eq. (A.7), terms quadratic in θ0 and β̄ can only arise from the θ2
1θ

2
2 in the Green’s functions

(essentially the θ2
1(F (x1)

2 + . . . )θ2
2(F (x2)

2 + . . . ) terms). A simple computation shows

that this operation is proportional to (x1 − x2)
2. So provided the Green’s function is not

singular as x1 → x2, there are no infrared divergences.

To generalize to higher orders, we need to investigate possible corrections to the form

(for fixed values of the collective coordinates) of the Green’s function as x1 → x2. We will

discuss this issue in the next subsection, where we will argue that the Green’s functions

are non-singular as x1 → x2.

A.3 Behavior of Green’s functions in the instanton background

From the arguments of NSVZ, one can construct the desired correlation function if one

knows the θ2
1θ

2
2 behavior of the correlation function

〈W 2
α(x1, θ1)W

2
β (x2, θ2)〉. (A.12)

In ordinary perturbation theory, this Green’s function vanishes as a consequence of fermi-

bose cancelations. This follows from standard arguments for the structure of chiral Green’s

functions.

〈Φ(x1, θ1)Φ(x2, θ2)〉 = 〈Φ(x1, θ1 − θ2, θ̄1)Φ(x2, 0, θ̄2)〉. (A.13)

But this correlator vanishes in perturbation theory as a consequence of the chiral symmetry

of perturbation theory.

About the instanton, at lowest order, this is just F cl 2
µν (x1)F

cl 2
ρσ (x2). We saw that it is

crucial that this is non-singular as x1 → x2; then the Green’s function of interest, obtained

from the NSVZ zero mode argument, vanishes as x1 → x2, which is what we need to insure

the absence of infrared divergences.
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At higher orders, we again work with component fields, calculating the correlator of

the θ2
1, θ

2
2 operators.7 This is some (in general complicated, non-local) function of x1, x2.

As before, to establish whether there is an infrared singularity in the ρ integral, we can

study the limit x1 → 0, x2 → 0. In this case, once we make the replacement of eq. (A.8);

the coefficient of α2β̄2 vanishes.

But we might still worry that correlation functions might be singular as x1 → x2;

after all, perturbative Green’s functions are singular. The absence of singularities, how-

ever, is plausible; for small x1 − x2, the background instanton should be unimportant, and

the propagators should reduce to those of the trivial background. For these, as we have

explained, there is a cancelation between fermions and bosons. One can develop a pertur-

bation expansion, for short distances, of the propagators in terms of free propagators, and

show that the corrections are non-singular. As a check, one can consider known propaga-

tors. In particular, ref. [33] provides an expression for the isospin one scalar propagator in

an SU(2) instanton background. Taking the limit x1 = (1 + ǫ)x2, for example, one finds

that there is a 1/ǫ2 singularity, which is just the free field singularity, and the term of order

1/ǫ cancels.

Now it is also crucial that logarithmic modification of the measure, as contemplated

in the previous section, even if present, will not alter this. Factors of log(ρ|m|) would not

render the integrals infrared divergent.

We can now prove the non-renormalization theorem simply. In the absence of infrared

divergences, holomorphy for the Green’s function must hold order by order in the coupling

expansion for g2. It may be possible to make this proof more direct, but it is adequate to

establish the main result. To all orders in the perturbation expansion about the instanton,

there are no corrections to the lowest component of ∆. The discrepancy between the strong

and weak coupling computations must be understood differently.
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