40 research outputs found

    Constant mean curvature surfaces in AdS_3

    Get PDF
    We construct constant mean curvature surfaces of the general finite-gap type in AdS_3. The special case with zero mean curvature gives minimal surfaces relevant for the study of Wilson loops and gluon scattering amplitudes in N=4 super Yang-Mills. We also analyze properties of the finite-gap solutions including asymptotic behavior and the degenerate (soliton) limit, and discuss possible solutions with null boundaries.Comment: 19 pages, v2: minor corrections, to appear in JHE

    Graviton Vertices and the Mapping of Anomalous Correlators to Momentum Space for a General Conformal Field Theory

    Full text link
    We investigate the mapping of conformal correlators and of their anomalies from configuration to momentum space for general dimensions, focusing on the anomalous correlators TOOTOO, TVVTVV - involving the energy-momentum tensor (T)(T) with a vector (V)(V) or a scalar operator (OO) - and the 3-graviton vertex TTTTTT. We compute the TOOTOO, TVVTVV and TTTTTT one-loop vertex functions in dimensional regularization for free field theories involving conformal scalar, fermion and vector fields. Since there are only one or two independent tensor structures solving all the conformal Ward identities for the TOOTOO or TVVTVV vertex functions respectively, and three independent tensor structures for the TTTTTT vertex, and the coefficients of these tensors are known for free fields, it is possible to identify the corresponding tensors in momentum space from the computation of the correlators for free fields. This works in general dd dimensions for TOOTOO and TVVTVV correlators, but only in 4 dimensions for TTTTTT, since vector fields are conformal only in d=4d=4. In this way the general solution of the Ward identities including anomalous ones for these correlators in (Euclidean) position space, found by Osborn and Petkou is mapped to the ordinary diagrammatic one in momentum space. We give simplified expressions of all these correlators in configuration space which are explicitly Fourier integrable and provide a diagrammatic interpretation of all the contact terms arising when two or more of the points coincide. We discuss how the anomalies arise in each approach [...]Comment: 57 pages, 7 figures. Refs adde

    Utilization of Glycerol from Biodiesel Industry By-Product into Several Higher Value Product

    Get PDF
    Since the 1980s the energy demand has been increasing steadily, including diesel fuel. On the other hand the oil reserve in the world was increasingly limited because of being the product that could not be renewed. Therefore, effort was carried out to look for the alternative fuel that could be renewed and environment friendly. The alternative energy from new renewable energy is a solution to reduce the dependence of fossil energy. The renewable energy consists of the energy of water, wind, biomass or biofuels, solar energy, ocean energy, and geothermal energy. One of the biofuels is biodiesel. Biodiesel is diesel fuel which is made from vegetable oil by transesterification. The abundance of glycerol will result in declining sales value of glycerol as a by-product of the biodiesel plant. It should be anticipated to improve the usefulness of glycerol both in terms of quantity and its variants. The increasing usefulness of glycerol will result in the higher price of glycerol that will increase the profitability of biodiesel plants. Among the usefulness of glycerol investigated is as an ingredient in pharmaceutical products, polyether, emulsifiers, fabric softener, stabilizers, preservatives in bread, ice cream, cosmetic ingredients, a propellant binder, and others. This chapter explains the utilization of glycerol to produce triacetin as bioadditive and polyglycidyl nitrate (PGN) as a propellant binder. Triacetin is used to increase octane number of fuel and improve the biodiesel’s performance. Propellant binder consists of two kinds of non-energetic polymers and polymer energetic. The most energetic polymer is PGN. The focus of this chapter is to determine each step of reactions, operating conditions of process and the results of products

    Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers

    Get PDF
    Papillary thyroid cancers (PTCs) incidence dramatically increased in the vicinity of Chernobyl. The cancer-initiating role of radiation elsewhere is debated. Therefore, we searched for a signature distinguishing radio-induced from sporadic cancers. Using microarrays, we compared the expression profiles of PTCs from the Chernobyl Tissue Bank (CTB, n=12) and from French patients with no history of exposure to ionising radiations (n=14). We also compared the transcriptional responses of human lymphocytes to the presumed aetiological agents initiating these tumours, γ-radiation and H2O2. On a global scale, the transcriptomes of CTB and French tumours are indistinguishable, and the transcriptional responses to γ-radiation and H2O2 are similar. On a finer scale, a 118 genes signature discriminated the γ-radiation and H2O2 responses. This signature could be used to classify the tumours as CTB or French with an error of 15–27%. Similar results were obtained with an independent signature of 13 genes involved in homologous recombination. Although sporadic and radio-induced PTCs represent the same disease, they are distinguishable with molecular signatures reflecting specific responses to γ-radiation and H2O2. These signatures in PTCs could reflect the susceptibility profiles of the patients, suggesting the feasibility of a radiation susceptibility test

    All one-loop amplitudes in N=6 superconformal Chern-Simons theory

    Get PDF
    We exploit a recently found connection between special triple-cut diagrams and tree-level recursive diagrams to derive a general formula capturing the multi-particle factorisation of arbitrary one-loop amplitudes in the ABJM theory. This formula contains certain anomalous contributions which are reminiscent of the so-called non-factorising contributions appearing in the factorisation of one-loop amplitudes in four-dimensional gauge theory. In the second part of the paper we derive a recursion relation for the supercoefficients of one-loop amplitudes in ABJM theory. By applying this recursion relation, any one-loop supercoefficient can be reduced to special triple-cut diagrams involving at least one four-point tree amplitude. In turn, this implies that any one-loop supercoefficient can be derived from tree-level recursive diagrams.Comment: 22 pages, 7 figure

    Genetic Basis of Virulence Attenuation Revealed by Comparative Genomic Analysis of Mycobacterium tuberculosis Strain H37Ra versus H37Rv

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading infectious disease despite the availability of chemotherapy and BCG vaccine. The commonly used avirulent M. tuberculosis strain H37Ra was derived from virulent strain H37 in 1935 but the basis of virulence attenuation has remained obscure despite numerous studies. We determined the complete genomic sequence of H37Ra ATCC25177 and compared that with its virulent counterpart H37Rv and a clinical isolate CDC1551. The H37Ra genome is highly similar to that of H37Rv with respect to gene content and order but is 8,445 bp larger as a result of 53 insertions and 21 deletions in H37Ra relative to H37Rv. Variations in repetitive sequences such as IS6110 and PE/PPE/PE-PGRS family genes are responsible for most of the gross genetic changes. A total of 198 single nucleotide variations (SNVs) that are different between H37Ra and H37Rv were identified, yet 119 of them are identical between H37Ra and CDC1551 and 3 are due to H37Rv strain variation, leaving only 76 H37Ra-specific SNVs that affect only 32 genes. The biological impact of missense mutations in protein coding sequences was analyzed in silico while nucleotide variations in potential promoter regions of several important genes were verified by quantitative RT-PCR. Mutations affecting transcription factors and/or global metabolic regulations related to in vitro survival under aging stress, and mutations affecting cell envelope, primary metabolism, in vivo growth as well as variations in the PE/PPE/PE-PGRS family genes, may underlie the basis of virulence attenuation. These findings have implications not only for improved understanding of pathogenesis of M. tuberculosis but also for development of new vaccines and new therapeutic agents

    Epidemiologia do carcinoma basocelular

    Full text link

    Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials

    Get PDF
    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment
    corecore