78 research outputs found
Feature extraction based on bio-inspired model for robust emotion recognition
Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin
Two-Dimensional Electrophoresis of Tau Mutants Reveals Specific Phosphorylation Pattern Likely Linked to Early Tau Conformational Changes
The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, “human neuronal cell lines” overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation
Toll-like receptor 9 polymorphisms are associated with severity variables in a cohort of meningococcal meningitis survivors
BACKGROUND: Genetic variation in immune response genes is associated with susceptibility and severity of infectious diseases. Toll-like receptor (TLR) 9 polymorphisms are associated with susceptibility to develop meningococcal meningitis (MM). The aim of this study is to compare genotype distributions of two TLR9 polymorphisms between clinical severity variables in MM survivors. METHODS: We used DNA samples of a cohort of 390 children who survived MM. Next, we determined the genotype frequencies of TLR9 -1237 and TLR9 +2848 polymorphisms and compared these between thirteen clinical variables associated with prognostic factors predicting adverse outcome of bacterial meningitis in children. RESULTS: The TLR9 -1237 TC and CC genotypes were associated with a decreased incidence of a positive blood culture for Neisseria (N.) meningitidis (p = 0.014, odds ratio (OR) 0.5. 95% confidence interval (CI) 0.3 – 0.9). The TLR9 +2848 AA mutant was associated with a decreased incidence of a positive blood culture for N. meningitidis (p = 0.017, OR 0.6, 95% CI 0.3 – 0.9). Cerebrospinal fluid (CSF) leukocytes per μL were higher in patients carrying the TLR9 -1237 TC or CC genotypes compared to carriers of the TT wild type (WT) (p = 0.024, medians: 2117, interquartile range (IQR) 4987 versus 955, IQR 3938). CSF blood/glucose ratios were lower in TLR9 -1237 TC or CC carriers than in carriers of the TT WT (p = 0.017, medians: 0.20, IQR 0.4 versus 0.35, IQR 0.5). CSF leukocytes/μL were higher in patients carrying the TLR9 +2848 AA mutant compared to carriers of GG or GA (p = 0.0067, medians: 1907, IQR 5221 versus 891, IQR 3952). CONCLUSIONS: We identified TLR9 genotypes associated with protection against meningococcemia and enhanced local inflammatory responses inside the central nervous system, important steps in MM pathogenesis and defense
Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide
BACKGROUND: Recently it has been reported that, toll-like receptors (TLRs) are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS) via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. METHODS: Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis, respectively. Activation of nuclear factor (NF)-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP) kinase and interferon regulatory factor (IRF)-3 was detected by immunoblot analysis. RESULTS: Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. CONCLUSION: Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3
Characterization of a pneumococcal meningitis mouse model
<p>Abstract</p> <p>Background</p> <p><it>S. pneumoniae </it>is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation.</p> <p>Methods</p> <p>Adult mice (C57BL/6) were inoculated in the cisterna magna with increasing doses of <it>S. pneumoniae </it>serotype 3 colony forming units (CFU; n = 24, 10<sup>4</sup>, 10<sup>5</sup>, 10<sup>6 </sup>and 10<sup>7 </sup>CFU) and survival studies were performed. Cerebrospinal fluid (CSF), brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 10<sup>4 </sup>CFU <it>S. pneumoniae </it>serotype 3 and sacrificed at 6 (n = 6) and 30 hours (n = 6). Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex<sup>®</sup>) in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies.</p> <p>Results</p> <p>Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 10<sup>4</sup>, 56 hrs; 10<sup>5</sup>, 38 hrs, 10<sup>6</sup>, 28 hrs. 10<sup>7</sup>, 24 hrs). Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 10<sup>4 </sup>CFU of <it>S. pneumoniae</it>, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively.</p> <p>Conclusion</p> <p>We have developed and validated a murine model of pneumococcal meningitis.</p
The impact of single and pairwise Toll-like receptor activation on neuroinflammation and neurodegeneration
Background Toll-like receptors (TLRs) enable innate immune cells to respond to
pathogen- and host-derived molecules. The central nervous system (CNS)
exhibits most of the TLRs identified with predominant expression in microglia,
the major immune cells of the brain. Although individual TLRs have been shown
to contribute to CNS disorders, the consequences of multiple activated TLRs on
the brain are unclear. We therefore systematically investigated and compared
the impact of sole and pairwise TLR activation on CNS inflammation and injury.
Methods Selected TLRs expressed in microglia and neurons were stimulated with
their specific TLR ligands in varying combinations. Cell cultures were then
analyzed by immunocytochemistry, FlowCytomix, and ELISA. To determine neuronal
injury and neuroinflammation in vivo, C57BL/6J mice were injected
intrathecally with TLR agonists. Subsequently, brain sections were analyzed by
quantitative real-time PCR and immunohistochemistry. Results Simultaneous
stimulation of TLR4 plus TLR2, TLR4 plus TLR9, and TLR2 plus TLR9 in microglia
by their respective specific ligands results in an increased inflammatory
response compared to activation of the respective single TLR in vitro. In
contrast, additional activation of TLR7 suppresses the inflammatory response
mediated by the respective ligands for TLR2, TLR4, or TLR9 up to 24 h,
indicating that specific combinations of activated TLRs individually modulate
the inflammatory response. Accordingly, the composition of the inflammatory
response pattern generated by microglia varies depending on the identity and
combination of the activated TLRs engaged. Likewise, neuronal injury occurs in
response to activation of only selected TLRs and TLR combinations in vitro.
Activation of TLR2, TLR4, TLR7, and TLR9 in the brain by intrathecal injection
of the respective TLR ligand into C57BL/6J mice leads to specific expression
patterns of distinct TLR mRNAs in the brain and causes influx of leukocytes
and inflammatory mediators into the cerebrospinal fluid to a variable extent.
Also, the intensity of the inflammatory response and neurodegenerative effects
differs according to the respective activated TLR and TLR combinations used in
vivo. Conclusions Sole and pairwise activation of TLRs modifies the pattern
and extent of inflammation and neurodegeneration in the CNS, thereby enabling
innate immunity to take account of the CNS diseases’ diversity
Dual modification of Alzheimer’s disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach
In sporadic Alzheimer’s disease (AD), neurofibrillary lesion formation is preceded by extensive post-translational modification of the microtubule associated protein tau. To identify the modification signature associated with tau lesion formation at single amino acid resolution, immunopurified paired helical filaments were isolated from AD brain and subjected to nanoflow liquid chromatography–tandem mass spectrometry analysis. The resulting spectra identified monomethylation of lysine residues as a new tau modification. The methyl-lysine was distributed among seven residues located in the projection and microtubule binding repeat regions of tau protein, with one site, K254, being a substrate for a competing lysine modification, ubiquitylation. To characterize methyl lysine content in intact tissue, hippocampal sections prepared from post mortem late-stage AD cases were subjected to double-label confocal fluorescence microscopy using anti-tau and anti-methyl lysine antibodies. Anti-methyl lysine immunoreactivity colocalized with 78 ± 13% of neurofibrillary tangles in these specimens. Together these data provide the first evidence that tau in neurofibrillary lesions is post-translationally modified by lysine methylation
The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes
Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell
Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis
Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry, inappropriate immunological memory and autoimmunity
- …