16 research outputs found

    Impact of severity, duration, and etiology of hyperthyroidism on bone turnover markers and bone mineral density in men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperthyroidism is accompanied by osteoporosis with higher incidence of fracture rates. The present work aimed to study bone status in hyperthyroidism and to elucidate the impact of severity, duration, and etiology of hyperthyroidism on biochemical markers of bone turnover and bone mineral density (BMD).</p> <p>Methods</p> <p>Fifty-two male patients with hyperthyroidism, 31 with Graves' disease (GD) and 21 with toxic multinodular goiter (TNG), with an age ranging from 23 to 65 years were included, together with 25 healthy euthyroid men with matched age as a control group. In addition to full clinical examination, patients and controls were subjected to measurement of BMD using dual-energy X-ray absorptiometery scanning of the lower half of the left radius. Also, some biochemical markers of bone turnover were done for all patients and controls.</p> <p>Results</p> <p>Biochemical markers of bone turnover: included serum bone specific alkaline phosphatase, osteocalcin, carboxy terminal telopeptide of type l collagen also, urinary deoxypyridinoline cross-links (DXP), urinary DXP/urinary creatinine ratio and urinary calcium/urinary creatinine ratio were significantly higher in patients with GD and TNG compared to controls (P < 0.01). However, there was non-significant difference in these parameters between GD and TNG patients (P > 0.05). BMD was significantly lower in GD and TNG compared to controls, but the Z-score of BMD at the lower half of the left radius in patients with GD (-1.7 ± 0.5 SD) was not significantly different from those with TNG (-1.6 ± 0.6 SD) (>0.05). There was significant positive correlation between free T3 and free T4 with biochemical markers of bone turnover, but negative correlation between TSH and those biochemical markers of bone turnover. The duration of the thyrotoxic state positively correlated with the assessed bone turnover markers, but it is negatively correlated with the Z-score of BMD in the studied hyperthyroid patients (r = -0.68, P < 0.0001).</p> <p>Conclusion</p> <p>Men with hyperthyroidism have significant bone loss with higher biochemical markers of bone turnover. The severity and the duration of the thyrotoxic state are directly related to the derangement of biochemical markers of bone turnover and bone loss.</p

    Role of PACAP and VIP Signalling in Regulation of Chondrogenesis and Osteogenesis

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are multifunctional proteins that can regulate diverse physiological processes. These are also regarded as neurotrophic and anti-inflammatory substances in the CNS, and PACAP is reported to prevent harmful effects of oxidative stress. In the last decade more and more data accumulated on the similar function of PACAP in various tissues, but its cartilage- and bone-related presence and functions have not been widely investigated yet. In this summary we plan to verify the presence and function of PACAP and VIP signalling tool kit during cartilage differentiation and bone formation. We give evidence about the protective function of PACAP in cartilage regeneration with oxidative or mechanically stress and also with the modulation of PACAP signalling in vitro in osteogenic cells. Our observations imply the therapeutic perspective that PACAP might be applicable as a natural agent exerting protecting effect during joint inflammation and/or may promote cartilage regeneration during degenerative diseases of articular cartilage

    Experimental research into the potential therapeutic effect of GYY4137 on Ovariectomy-induced osteoporosis

    Get PDF
    Abstract Background Evidence has shown that endogenous H2S plays an important role in the physiological and pathophysiological processes of many organs. The study aimed to explore whether exogenous H2S has a potential therapeutic effect on a rat ovariectomy-induced model of osteoporosis. Methods The OVX osteoporosis model was established in female Sprague-Dawley rats by full bilateral ovariectomy. The rats were randomly divided into four groups, with the two experimental groups receiving an intraperitoneal injection of GYY4137 or sodium alendronate. The level of H2S in the plasma was determined and common laboratory indicators to diagnose osteoporosis, such as alkaline phosphatase (ALP) activity and the levels of osteocalcin (OCN), calcitonin, parathyroid hormone and leptin were measured. The bone mineral density (BMD) of the 4th and 5th lumbar vertebrae was measured using dual-energy X-ray absorptiometry. The maximum stress of femoral fracture was obtained through a three-point bending test of the femur. Results The OVX osteoporosis model was successfully established. GYY4137 was injected to increase the level of H2S in the plasma in one group, designated OVX-GYY during the observation period (p < 0.05). At 12 weeks, the BMD value of the fourth lumbar vertebra in the OVX-GYY group had increased (p < 0.05). The BMD femur value in the OVX-vehicle group had decreased (p < 0.05). Bilateral ovariectomy leads to biochemical disorders related to bone metabolism and hormone levels in rat plasma (all p < 0.05). Ovariectomy also reduced blood calcium, blood phosphate and calcitonin, and increased parathyroid hormone and leptin. The opposite results were obtained for the groups with alendronate sodium or GYY4137 treatment (all p < 0.05). Conclusions Through the slow release of H2S, GYY4137 did an excellent job of simulating endogenous neuroendocrine gaseous signaling molecules. Exogenous H2S had a regulatory effect on osteoporosis in ovariectomized rats, showing potential value for the treatment of human postmenopausal osteoporosis

    Triiodothyronine stimulates glucose transport in bone cells

    Full text link
    Thyroid hormones increase energy expenditure and bone turnover in vivo. To study whether 3,3',5-triiodo-l-thyronine (T(3)) stimulates the uptake of glucose in osteoblastic cells, PyMS (a cell line derived from rat bone) cells were kept in serum-free culture medium and treated with T(3). We measured [1-(14)C]-2-deoxy-D: -glucose (2DG) uptake and looked for expression of the high-affinity glucose transporters GLUT1 and GLUT3 by northern and western analysis. T(3) did not influence the cell number but slightly (1.3-fold) increased the protein content of the cell cultures. 2DG uptake was low in serum-deprived cell cultures and was increased by T(3) (up to 2.5-fold at 1 nmol l(-1) after 4 days) in a dose- and time-dependent manner. Triiodothyronine at 1 nmol l(-1) increased GLUT1 and GLUT3 abundance in membranes. Therefore, increased glucose uptake induced by T(3) in osteoblasts may be mediated by the known high-affinity glucose transporters GLUT1 and GLUT3
    corecore