15 research outputs found

    Language-specific neural systems for semantic organization

    No full text
    Poster presentaiton: no. 310 M-P

    Activity levels in the left hemisphere caudate-fusiform circuit predict how well a second language will be learned

    No full text
    How second language (L2) learning is achieved in the human brain remains one of the fundamental questions of neuroscience and linguistics. Previous neuroimaging studies with bilinguals have consistently shown overlapping cortical organization of the native language (L1) and L2, leading to a prediction that a common neurobiological marker may be responsible for the development of the two languages. Here, by using functional MRI, we show that later skills to read in L2 are predicted by the activity level of the fusiform-caudate circuit in the left hemisphere, which nonetheless is not predictive of the ability to read in the native language. We scanned 10-y-old children while they performed a lexical decision task on L2 (and L1) stimuli. The subjects' written language (reading) skills were behaviorally assessed twice, the first time just before we performed the fMRI scan (time 1 reading) and the second time 1 y later (time 2 reading). A whole-brain based analysis revealed that activity levels in left caudate and left fusiform gyrus correlated with L2 literacy skills at time 1. After controlling for the effects of time 1 reading and nonverbal IQ, or the effect of in-scanner lexical performance, the development in L2 literacy skills (time 2 reading) was also predicted by activity in left caudate and fusiform regions that are thought to mediate language control functions and resolve competition arising from L1 during L2 learning. Our findings suggest that the activity level of left caudate and fusiform regions serves as an important neurobiological marker for predicting accomplishment in reading skills in a new language.link_to_subscribed_fulltex

    The contribution of island populations to in situ genetic conservation

    Full text link
    Genetic variation is often lower within island populations, however islands may also harbor divergent genetic variation. The likelihood that insular populations are genetically diverse or divergent should be influenced by island size and isolation. We tested this assumption by comparing patterns of genetic variation across all major island song sparrow populations along the Pacific North American coast. Allelic richness was moderately lowered even on islands which are close to large, potential sources. The most significant differences in allelic richness occurred on very small or highly remote islands. Gene diversity was significantly lower only on remote or very small islands. We found that island populations contribute to regional genetic variation through both the amount of genetic variation and the uniqueness of that variation. The partitioning of this contribution was associated with the size and isolation of the island populations

    Sleep modulates the neural substrates of both spatial and contextual memory consolidation.

    Get PDF
    It is known that sleep reshapes the neural representations that subtend the memories acquired while navigating in a virtual environment. However, navigation is not process-pure, as manifold learning components contribute to performance, notably the spatial and contextual memory constituents. In this context, it remains unclear whether post-training sleep globally promotes consolidation of all of the memory components embedded in virtual navigation, or rather favors the development of specific representations. Here, we investigated the effect of post-training sleep on the neural substrates of the consolidation of spatial and contextual memories acquired while navigating in a complex 3D, naturalistic virtual town. Using fMRI, we mapped regional cerebral activity during various tasks designed to tap either the spatial or the contextual memory component, or both, 72 h after encoding with or without sleep deprivation during the first post-training night. Behavioral performance was not dependent upon post-training sleep deprivation, neither in a natural setting that engages both spatial and contextual memory processes nor when looking more specifically at each of these memory representations. At the neuronal level however, analyses that focused on contextual memory revealed distinct correlations between performance and neuronal activity in frontal areas associated with recollection processes after post-training sleep, and in the parahippocampal gyrus associated with familiarity processes in sleep-deprived participants. Likewise, efficient spatial memory was associated with posterior cortical activity after sleep whereas it correlated with parahippocampal/medial temporal activity after sleep deprivation. Finally, variations in place-finding efficiency in a natural setting encompassing spatial and contextual elements were associated with caudate activity after post-training sleep, suggesting the automation of navigation. These data indicate that post-training sleep modulates the neural substrates of the consolidation of both the spatial and contextual memories acquired during virtual navigation.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore