1,162 research outputs found
Energy Content of Colliding Plane Waves using Approximate Noether Symmetries
This paper is devoted to study the energy content of colliding plane waves
using approximate Noether symmetries. For this purpose, we use approximate Lie
symmetry method of Lagrangian for differential equations. We formulate the
first-order perturbed Lagrangian for colliding plane electromagnetic and
gravitational waves. It is shown that in both cases, there does not existComment: 18 pages, accepted for publication in Brazilian J Physic
CP Violation and Dark Matter
A brief review is given of the effects of CP violation on the direct
detection of neutralinos in dark matter detectors. We first summarize the
current developments using the cancellation mechanism which allows for the
existence of large CP violating phases consistent with experimental limits on
the electron and on the neutron electric dipole moments in a broad class of
SUSY, string and D brane models. We then discuss their effects on the
scattering of neutralinos from quarks and on the event rates. It is found that
while CP effects on the event rates can be enormous such effects are reduced
significantly with the imposition of the EDM constraints. However, even with
the inclusion of the EDM constraints the effects are still very significant and
should be included in a precision prediction of event rates in any SUSY, string
or D brane model.Comment: Based on an invited talk at the conference "Sources and Detection of
Dark Matter in the Universe", at Marina del Rey, CA, Feb. 23-25, 2000; 12
pages, Latex including 2 figure
Interacting Spin-2 Fields
We construct consistent theories of multiple interacting spin-2 fields in
arbitrary spacetime dimensions using a vielbein formulation. We show that these
theories have the additional primary constraints needed to eliminate potential
ghosts, to all orders in the fields, and to all orders beyond any decoupling
limit. We postulate that the number of spin-2 fields interacting at a single
vertex is limited by the number of spacetime dimensions. We then show that, for
the case of two spin-2 fields, the vielbein theory is equivalent to the
recently proposed theories of ghost-free massive gravity and bi-metric gravity.
The vielbein formulation greatly simplifies the proof that these theories have
an extra primary constraint which eliminates the Boulware-Deser ghost.Comment: 42 pages, 3 figures. v3 alternative argument using constrained
spatial vielbeins has been removed (see footnote 3
Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance
We generalize the coset construction of Callan, Coleman, Wess and Zumino to
theories in which the Lorentz group is spontaneously broken down to one of its
subgroups. This allows us to write down the most general low-energy effective
Lagrangian in which Lorentz invariance is non-linearly realized, and to explore
the consequences of broken Lorentz symmetry without having to make any
assumptions about the mechanism that triggers the breaking. We carry out the
construction both in flat space, in which the Lorentz group is a global
spacetime symmetry, and in a generally covariant theory, in which the Lorentz
group can be treated as a local internal symmetry. As an illustration of this
formalism, we construct the most general effective field theory in which the
rotation group remains unbroken, and show that the latter is just the
Einstein-aether theory.Comment: 45 pages, no figures
On Inflation with Non-minimal Coupling
A simple realization of inflation consists of adding the following operators
to the Einstein-Hilbert action: (partial phi)^2, lambda phi^4, and xi phi^2 R,
with xi a large non-minimal coupling. Recently there has been much discussion
as to whether such theories make sense quantum mechanically and if the inflaton
phi can also be the Standard Model Higgs. In this note we answer these
questions. Firstly, for a single scalar phi, we show that the quantum field
theory is well behaved in the pure gravity and kinetic sectors, since the
quantum generated corrections are small. However, the theory likely breaks down
at ~ m_pl / xi due to scattering provided by the self-interacting potential
lambda phi^4. Secondly, we show that the theory changes for multiple scalars
phi with non-minimal coupling xi phi dot phi R, since this introduces
qualitatively new interactions which manifestly generate large quantum
corrections even in the gravity and kinetic sectors, spoiling the theory for
energies > m_pl / xi. Since the Higgs doublet of the Standard Model includes
the Higgs boson and 3 Goldstone bosons, it falls into the latter category and
therefore its validity is manifestly spoiled. We show that these conclusions
hold in both the Jordan and Einstein frames and describe an intuitive analogy
in the form of the pion Lagrangian. We also examine the recent claim that
curvature-squared inflation models fail quantum mechanically. Our work appears
to go beyond the recent discussions.Comment: 14 pages, 2 figures. Version 2: Clarified findings and improved
wording. Elaborated important sections and removed an unnecessary section.
Added references. Version 3: Updated towards JHEP version. Version 4: Final
JHEP versio
Is Our Universe Natural?
It goes without saying that we are stuck with the universe we have.
Nevertheless, we would like to go beyond simply describing our observed
universe, and try to understand why it is that way rather than some other way.
Physicists and cosmologists have been exploring increasingly ambitious ideas
that attempt to explain why certain features of our universe aren't as
surprising as they might first appear.Comment: Invited review for Nature, 11 page
Twenty Years of SUGRA
A brief review is given of the developments of mSUGRA and its extensions
since the formulation of these models in 1982. Future directions and prospects
are also discussed.Comment: Invited talk at the International Conference BEYOND-2003, Schloss
Ringberg, Germany, June 10-14, 2003; 21 pages, Late
General Aspects of Tree Level Gauge Mediation
Tree level gauge mediation (TGM) may be considered as the simplest way to
communicate supersymmetry breaking: through the tree level renormalizable
exchange of heavy gauge messengers. We study its general structure, in
particular the general form of tree level sfermion masses and of one loop, but
enhanced, gaugino masses. This allows us to set up general guidelines for model
building and to identify the hypotheses underlying the phenomenological
predictions. In the context of models based on the "minimal" gauge group
SO(10), we show that only two "pure" embeddings of the MSSM fields are possible
using representations, each of them leading to specific predictions
for the ratios of family universal sfermion masses at the GUT scale,
or (in SU(5)
notation). These ratios are determined by group factors and are peculiar enough
to make this scheme testable at the LHC. We also discuss three possible
approaches to the -problem, one of them distinctive of TGM.Comment: 37 pages, 2 figure
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
Spinning Conformal Correlators
We develop the embedding formalism for conformal field theories, aimed at
doing computations with symmetric traceless operators of arbitrary spin. We use
an index-free notation where tensors are encoded by polynomials in auxiliary
polarization vectors. The efficiency of the formalism is demonstrated by
computing the tensor structures allowed in n-point conformal correlation
functions of tensors operators. Constraints due to tensor conservation also
take a simple form in this formalism. Finally, we obtain a perfect match
between the number of independent tensor structures of conformal correlators in
d dimensions and the number of independent structures in scattering amplitudes
of spinning particles in (d+1)-dimensional Minkowski space.Comment: 46 pages, 3 figures; V2: references added; V3: tiny misprint
corrected in (A.9
- …