3,302 research outputs found
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation
FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD
Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride
The Schr\"odinger equation dictates that the propagation of nearly free
electrons through a weak periodic potential results in the opening of band gaps
near points of the reciprocal lattice known as Brillouin zone boundaries.
However, in the case of massless Dirac fermions, it has been predicted that the
chirality of the charge carriers prevents the opening of a band gap and instead
new Dirac points appear in the electronic structure of the material. Graphene
on hexagonal boron nitride (hBN) exhibits a rotation dependent Moir\'e pattern.
In this letter, we show experimentally and theoretically that this Moir\'e
pattern acts as a weak periodic potential and thereby leads to the emergence of
a new set of Dirac points at an energy determined by its wavelength. The new
massless Dirac fermions generated at these superlattice Dirac points are
characterized by a significantly reduced Fermi velocity. The local density of
states near these Dirac cones exhibits hexagonal modulations indicating an
anisotropic Fermi velocity.Comment: 16 pages, 6 figure
Determination of Region of Influence Obtained by Aircraft Vertical Profiles Using the Density of Trajectories from the HYSPLIT Model
Aircraft atmospheric profiling is a valuable technique for determining greenhouse gas fluxes at regional scales (104–106 km2). Here, we describe a new, simple method for estimating the surface influence of air samples that uses backward trajectories based on the Lagrangian model Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT). We determined “regions of influence” on a quarterly basis between 2010 and 2018 for four aircraft vertical profile sites: SAN and ALF in the eastern Amazon, and RBA and TAB or TEF in the western Amazon. We evaluated regions of influence in terms of their relative sensitivity to areas inside and outside the Amazon and their total area inside the Amazon. Regions of influence varied by quarter and less so by year. In the first and fourth quarters, the contribution of the region of influence inside the Amazon was 83–93% for all sites, while in the second and third quarters, it was 57–75%. The interquarter differences are more evident in the eastern than in the western Amazon. Our analysis indicates that atmospheric profiles from the western sites are sensitive to 42–52.2% of the Amazon. In contrast, eastern Amazon sites are sensitive to only 10.9–25.3%. These results may help to spatially resolve the response of greenhouse gas emissions to climate variability over Amazon
STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride
Graphene has demonstrated great promise for future electronics technology as
well as fundamental physics applications because of its linear energy-momentum
dispersion relations which cross at the Dirac point. However, accessing the
physics of the low density region at the Dirac point has been difficult because
of the presence of disorder which leaves the graphene with local microscopic
electron and hole puddles, resulting in a finite density of carriers even at
the charge neutrality point. Efforts have been made to reduce the disorder by
suspending graphene, leading to fabrication challenges and delicate devices
which make local spectroscopic measurements difficult. Recently, it has been
shown that placing graphene on hexagonal boron nitride (hBN) yields improved
device performance. In this letter, we use scanning tunneling microscopy to
show that graphene conforms to hBN, as evidenced by the presence of Moire
patterns in the topographic images. However, contrary to recent predictions,
this conformation does not lead to a sizable band gap due to the misalignment
of the lattices. Moreover, local spectroscopy measurements demonstrate that the
electron-hole charge fluctuations are reduced by two orders of magnitude as
compared to those on silicon oxide. This leads to charge fluctuations which are
as small as in suspended graphene, opening up Dirac point physics to more
diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201
Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases
Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests
Extension of non-minimal derivative coupling theory and Hawking radiation in black-hole spacetime
We study the greybody factor and Hawking radiation with a non-minimal
derivative coupling between the scalar field and the curvature in the
background of the slowly rotating Kerr-Newman black hole.
Our results show that both the absorption probability and luminosity of
Hawking radiation of the scalar field increase with the coupling.
Moreover, we also find that for the weak coupling , the
absorption probability and luminosity of Hawking radiation decrease when the
black hole's Hawking temperature decreases; while for stronger coupling
, the absorption probability and luminosity of Hawking radiation
increase on the contrary when the black hole's Hawking temperature decreases.
This feature is similar to the Hawking radiation in a -dimensional static
spherically-symmetric black hole surrounded by quintessence \cite{chensong}.Comment: 17 pages, 6 figures, 1 table, Title changed, Appendix changed,
accepted by JHE
Risky use of alcohol, drugs and cigarettes in a psychosis unit: a 1 1/2 year follow-up of stability and changes after initial screening
<p>Abstract</p> <p>Background</p> <p>Co-morbidity with substance use disorders negatively influences overall functioning in patients with psychosis. However, frequencies and courses of risky use of alcohol, drugs and cigarettes are rarely investigated in patients at psychosis units.</p> <p>The purpose of this study is to describe the use of alcohol, drugs and cigarettes in patients at a psychosis unit over a 1 1/2 year period after them having taken part in a screening investigation including a feed-back of the results to personnel. Relationships with sex and age are also described.</p> <p>Methods</p> <p>The patients' use of the substances was examined at baseline and at follow-up using three self-reporting instruments: Alcohol Use Disorders Identification Test (AUDIT), Drug Use Disorders Identification Test (DUDIT) and Fagerstrom Test for Nicotine Dependence (FTND).</p> <p>Results</p> <p>One hundred and eighty-six patients out of 238 at baseline (78 percent) took part in the follow-up. Total AUDIT score decreased in women. Older men more often developed a risky alcohol use. Older women tended to reduce their risky drug habits. On a group level the habits mostly were stable, but 11 percent changed their alcohol habits and 15 percent changed their smoking habits from risky to no/low risky use, or vice versa. Nine percent changed their drug habits, predominantly from risky to no/low risky use.</p> <p>Conclusion</p> <p>A more active approach towards alcohol, drug and smoking habits in psychosis units would probably be beneficial.</p
The decay Bs -> mu+ mu-: updated SUSY constraints and prospects
We perform a study of the impact of the recently released limits on BR(Bs ->
mu+ mu-) by LHCb and CMS on several SUSY models. We show that the obtained
constraints can be superior to those which are derived from direct searches for
SUSY particles in some scenarios, and the use of a double ratio of purely
leptonic decays involving Bs -> mu+ mu- can further strengthen such
constraints. We also discuss the experimental sensitivity and prospects for
observation of Bs -> mu+ mu- during the sqrt(s)=7 TeV run of the LHC, and its
potential implications.Comment: 30 pages, 21 figures. v2: Improved discussion of constraints from B
-> tau nu, references adde
- …