3,302 research outputs found

    Electric Field Effects on Graphene Materials

    Full text link
    Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2_2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε\varepsilon) of few-layer graphene and MoS2_2 is tunable by external electric fields (EextE_{\rm ext}). We show that at low fields (Eext<0.01E_{\rm ext}^{}<0.01 V/\AA) ε\varepsilon assumes a nearly constant value \sim4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε\varepsilon with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε\varepsilon on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter: Advances in Physics and Chemistry, Springer Series on Carbon Materials. Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    Emergence of Superlattice Dirac Points in Graphene on Hexagonal Boron Nitride

    Get PDF
    The Schr\"odinger equation dictates that the propagation of nearly free electrons through a weak periodic potential results in the opening of band gaps near points of the reciprocal lattice known as Brillouin zone boundaries. However, in the case of massless Dirac fermions, it has been predicted that the chirality of the charge carriers prevents the opening of a band gap and instead new Dirac points appear in the electronic structure of the material. Graphene on hexagonal boron nitride (hBN) exhibits a rotation dependent Moir\'e pattern. In this letter, we show experimentally and theoretically that this Moir\'e pattern acts as a weak periodic potential and thereby leads to the emergence of a new set of Dirac points at an energy determined by its wavelength. The new massless Dirac fermions generated at these superlattice Dirac points are characterized by a significantly reduced Fermi velocity. The local density of states near these Dirac cones exhibits hexagonal modulations indicating an anisotropic Fermi velocity.Comment: 16 pages, 6 figure

    Determination of Region of Influence Obtained by Aircraft Vertical Profiles Using the Density of Trajectories from the HYSPLIT Model

    Get PDF
    Aircraft atmospheric profiling is a valuable technique for determining greenhouse gas fluxes at regional scales (104–106 km2). Here, we describe a new, simple method for estimating the surface influence of air samples that uses backward trajectories based on the Lagrangian model Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT). We determined “regions of influence” on a quarterly basis between 2010 and 2018 for four aircraft vertical profile sites: SAN and ALF in the eastern Amazon, and RBA and TAB or TEF in the western Amazon. We evaluated regions of influence in terms of their relative sensitivity to areas inside and outside the Amazon and their total area inside the Amazon. Regions of influence varied by quarter and less so by year. In the first and fourth quarters, the contribution of the region of influence inside the Amazon was 83–93% for all sites, while in the second and third quarters, it was 57–75%. The interquarter differences are more evident in the eastern than in the western Amazon. Our analysis indicates that atmospheric profiles from the western sites are sensitive to 42–52.2% of the Amazon. In contrast, eastern Amazon sites are sensitive to only 10.9–25.3%. These results may help to spatially resolve the response of greenhouse gas emissions to climate variability over Amazon

    STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride

    Full text link
    Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles, resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moire patterns in the topographic images. However, contrary to recent predictions, this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201

    Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases

    Get PDF
    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests

    Extension of non-minimal derivative coupling theory and Hawking radiation in black-hole spacetime

    Full text link
    We study the greybody factor and Hawking radiation with a non-minimal derivative coupling between the scalar field and the curvature in the background of the slowly rotating Kerr-Newman black hole. Our results show that both the absorption probability and luminosity of Hawking radiation of the scalar field increase with the coupling. Moreover, we also find that for the weak coupling η<ηc\eta<\eta_c, the absorption probability and luminosity of Hawking radiation decrease when the black hole's Hawking temperature decreases; while for stronger coupling η>ηc\eta>\eta_c, the absorption probability and luminosity of Hawking radiation increase on the contrary when the black hole's Hawking temperature decreases. This feature is similar to the Hawking radiation in a dd-dimensional static spherically-symmetric black hole surrounded by quintessence \cite{chensong}.Comment: 17 pages, 6 figures, 1 table, Title changed, Appendix changed, accepted by JHE

    Risky use of alcohol, drugs and cigarettes in a psychosis unit: a 1 1/2 year follow-up of stability and changes after initial screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-morbidity with substance use disorders negatively influences overall functioning in patients with psychosis. However, frequencies and courses of risky use of alcohol, drugs and cigarettes are rarely investigated in patients at psychosis units.</p> <p>The purpose of this study is to describe the use of alcohol, drugs and cigarettes in patients at a psychosis unit over a 1 1/2 year period after them having taken part in a screening investigation including a feed-back of the results to personnel. Relationships with sex and age are also described.</p> <p>Methods</p> <p>The patients' use of the substances was examined at baseline and at follow-up using three self-reporting instruments: Alcohol Use Disorders Identification Test (AUDIT), Drug Use Disorders Identification Test (DUDIT) and Fagerstrom Test for Nicotine Dependence (FTND).</p> <p>Results</p> <p>One hundred and eighty-six patients out of 238 at baseline (78 percent) took part in the follow-up. Total AUDIT score decreased in women. Older men more often developed a risky alcohol use. Older women tended to reduce their risky drug habits. On a group level the habits mostly were stable, but 11 percent changed their alcohol habits and 15 percent changed their smoking habits from risky to no/low risky use, or vice versa. Nine percent changed their drug habits, predominantly from risky to no/low risky use.</p> <p>Conclusion</p> <p>A more active approach towards alcohol, drug and smoking habits in psychosis units would probably be beneficial.</p

    The decay Bs -> mu+ mu-: updated SUSY constraints and prospects

    Get PDF
    We perform a study of the impact of the recently released limits on BR(Bs -> mu+ mu-) by LHCb and CMS on several SUSY models. We show that the obtained constraints can be superior to those which are derived from direct searches for SUSY particles in some scenarios, and the use of a double ratio of purely leptonic decays involving Bs -> mu+ mu- can further strengthen such constraints. We also discuss the experimental sensitivity and prospects for observation of Bs -> mu+ mu- during the sqrt(s)=7 TeV run of the LHC, and its potential implications.Comment: 30 pages, 21 figures. v2: Improved discussion of constraints from B -> tau nu, references adde
    corecore