49 research outputs found

    Copper Induced Lysosomal Membrane Destabilisation in Haemolymph Cells of Mediterranean Green Crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania)

    Get PDF
    ABSTRACTDestabilisation of blood cell lysosomes in Mediterranean green crabCarcinus aestuarii was investigated using Neutral Red Retention Assay (NRRA). Crabs collected in Narta Lagoon, Vlora (Albania) during May 2014 were exposed in the laboratory to sub-lethal, environmentally realistic concentrations of copper. Neutral Red Retention Time (NRRT) and glucose concentration in haemolymph of animals were measured. The mean NRRT showed a significant reduction for the animals of the treatment group compared to the control one (from 118.6 ± 28.4 to 36.4 ± 10.48 min, p<0.05), indicating damage of lysosomal membrane. Haemolymph glucose concentration was significantly higher in the treatment group (from 37.8 ± 2.7 to 137.8.4 ± 16.2 mg/dL, p<0.05) than in control group, demonstrating the presence of stress on the animals. These results showed thatC. aestuarii could be used as a successful and reliable bioindicator for evaluating the exposure to contaminants in laboratory conditions. NRRA provides a successful tool for rapid assessment of heavy metal pollution effects on marine biota

    Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects

    No full text
    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (<63μm) from clean and contaminated field sites to create 4 treatments of increasing metal concentrations. Sydney rock oysters were then exposed to sediment treatments at different TSS concentrations for 4 d, and cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms
    corecore