35 research outputs found

    Increased aortic stiffness and blood pressure in non-classic Pompe disease

    Get PDF
    Vascular abnormalities and glycogen accumulation in vascular smooth muscle fibres have been described in Pompe disease. Using carotid-femoral pulse wave velocity (cfPWV), the gold standard methodology for determining aortic stiffness, we studied whether aortic stiffness is increased in patients with Pompe disease. Eighty-four adult Pompe patients and 179 age- and gender-matched volunteers participated in this cross-sectional case-controlled study. Intima media thickness and the distensibility of the right common carotid artery were measured using a Duplex scanner. Aortic augmentation index, central pulse pressure, aortic reflexion time and cfPWV were assessed using the SphygmoCor® system. CfPWV was higher in patients than in volunteers (8.8 versus 7.4 m/s, p < 0.001). This difference was still present after adjustment for age, gender, mean arterial blood pressure (MAP), heart rate and diabetes mellitus (p = 0.001), and was shown by subgroup analysis to apply to the 40-59 years age group (p = 0.004) and 60+ years age group (p = 0.01), but not to younger age groups (p = 0.99). Except for a shorter aortic reflexion time (p = 0.02), indirect indicators of arterial stiffness did not differ between patients and volunteers. Relative to volunteers (20 %), more Pompe patients had a history of hypertension (36 %, p = 0.005), and the MAP was higher than in volunteers (100 versus 92 mmHg, p < 0.001). This study shows that patients with non-classic Pompe disease have increased aortic stiffness and blood pressure. Whether this is due to glycogen accumulation requires further investigation. To reduce the potential risk of cardiovascular diseases, we recommend that blood pressure and other common cardiovascular risk factors are monitored regularly

    Differential diagnosis of perinatal hypophosphatasia: radiologic perspectives

    Get PDF
    Perinatal hypophosphatasia (HPP) is a rare, potentially life-threatening, inherited, systemic metabolic bone disease that can be difficult to recognize in utero and postnatally. Diagnosis is challenging because of the large number of skeletal dysplasias with overlapping clinical features. This review focuses on the role of fetal and neonatal imaging modalities in the differential diagnosis of perinatal HPP from other skeletal dysplasias (e.g., osteogenesis imperfecta, campomelic dysplasia, achondrogenesis subtypes, hypochondrogenesis, cleidocranial dysplasia). Perinatal HPP is associated with a broad spectrum of imaging findings that are characteristic of but do not occur in all cases of HPP and are not unique to HPP, such as shortening, bowing and angulation of the long bones, and slender, poorly ossified ribs and metaphyseal lucencies. Conversely, absent ossification of whole bones is characteristic of severe lethal HPP and is associated with very few other conditions. Certain features may help distinguish HPP from other skeletal dysplasias, such as sites of angulation of long bones, patterns of hypomineralization, and metaphyseal characteristics. In utero recognition of HPP allows for the assembly and preparation of a multidisciplinary care team before delivery and provides additional time to devise treatment strategies

    Guanidinoacetate Methyltransferase Activity in Lymphocytes, for a Fast Diagnosis

    No full text
    INTRODUCTION: Guanidinoacetate methyltransferase (GAMT) deficiency is an inborn error of metabolism (IEM), clinically characterized by intellectual disability, developmental delay, seizures, and movement disorders. Biochemical diagnosis of GAMT deficiency is based on the measurement of creatine and guanidinoacetate in urine, plasma, or CSF and is confirmed genetically by DNA analysis or by enzyme assay in lymphoblasts or fibroblasts. To obtain enough cells, these cells need to be cultured for at least 1 month. A less time-consuming diagnostic functional test is needed, since GAMT deficiency is a candidate for newborn screening (NBS) programs, to be able to confirm or rule out this IEM after an initial positive result in the NBS. METHODS: Stable-isotope-labeled 13C2-guanidinoacetate and 2H3-S-adenosylmethionine (SAM) were used, which are converted by GAMT present in lymphocyte extracts into 2H3-13C2-creatine. The formed 2H3-13C2-creatine was butylated and subsequently measured by liquid chromatography tandem mass-spectrometry (LC-MS/MS). RESULTS: We measured GAMT enzyme activity in lymphocyte extracts of 24 controls, 3 GAMT deficient patients and of 2 parents proven to be carrier. Because GAMT activity decreases when isolation time after venipuncture increases, reference values were obtained for 2 control groups: isolation on the day of venipuncture (27-130 pmol/h/mg) and 1 day afterwards (15-146 pmol/h/mg). Deficient patients had no detectable GAMT activity. The two carriers had GAMT activity within the normal range. CONCLUSION: We designed a fast, less invasive, and valid method to measure GAMT activity in lymphocytes using LC-MS/MS analysis without the need of time-consuming and laborious cell culture
    corecore