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Abstract

Background: Animal models of exercise and Parkinson’s disease (PD) have found that the physiologic use of exercise
may interact with the neurodegenerative disease process, likely mediated by brain derived neurotrophic factor (BDNF).
No reviews so far have assessed the methodologic quality of available intervention studies or have bundled the effect
sizes of individual studies on exercise-induced effects on BDNF blood levels in human PD.

Research design and methods: We searched MEDLINE, EMBASE, Cochrane Library, PsycINFO and PubMed from
inception to June 2017.

Results: Data aggregated from two randomized controlled trials and four pre-experimental studies with a total of 100
ambulatory patients with idiopathic PD (Hoehn/Yahr ≤3) found improvements in BDNF blood concentration levels in
all 6 studies (two RCTs and 4 pre-experimental studies). Pooled BDNF level change scores from the 2 RCTs resulted in a
significant homogeneous summary effect size (Standardized Mean Difference 2.06, 95% CI 1.36 to 2.76), and a significant
heterogeneous SES for the motor part of the UPDRS-III examination (MD -5.53, 95% CI -10.42 to -0.64). Clinical
improvements were noted in all studies using a variety of outcome measures.

Limitations: The evidence-base consists primarily of small studies with low to moderate methodological quality.

Conclusions: This review provides preliminary evidence for the effectiveness of physical exercise treatments for persons
with PD on BDNF blood levels. Further research is needed.
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Background
Parkinson’s disease (PD) is a complex, chronic, disabling
neurodegenerative condition for which there is no cure
[1]. The incidence of PD is expected to double in the
next 15 years. The motor features of the disease include
bradykinesia, rigidity, tremor, gait impairment and pos-
tural instability. Non-motor features include cognitive im-
pairment, depression, sleep problems, osteoporosis,
anxiety, fatigue and constipation. Increasingly, evidence
supports efficacy of physical therapy and physical

exercise interventions as adjunctive (i.e., helpful) to
dopamine replacement therapy for control of motor
symptoms and non-motor features, with improved
quality of life for people at all stages of PD [2–9]. The
physiologic effects of exercise may impact a number of
plasticity-related events in PD brain including synapto-
genesis, angiogenesis, and neurogenesis [10, 11].
In rodent PD models, physical exercise was found to

interact with the neurodegenerative process [12–14],
likely mediated by use-dependent expression of endogen-
ous neurotrophic factors [5, 15–28]. The scientific evalu-
ation of exercise induced changes in brain-derived
neurotrophic factor (BDNF) concentration is emerging as a
key research area in healthy adult populations [29–31] and
in neurodegenerative populations (e.g., multiple sclerosis
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[32, 33]) (schizophrenia [34, 35]). Endogenous production
of BDNF by voluntary exercise was shown in adult rats
[36], and is purported to play a crucial role in neuroplastic
effects of rehabilitation interventions of humans with neu-
rodegenerative disease [28, 29, 37–40].
The physiologic mechanisms underlying exercise-induced

BDNF changes are not well understood in PD but could
include long-term potentiation and long-term depression
mechanisms [41–43]. BDNF and exercise both promote
survival and growth of neurons in pars compacta of
substantia nigra and recovery of motor behavior [44].
In the 6-hydroxydopamine model of PD and exercise,
blocking of BDNF receptors causes enhanced postlesion
nigrostriatal dopaminergic cell loss, quantified as a reduc-
tion in the expression of tyrosine hydroxylase (TH), a rate-
limiting enzyme in dopamine biosynthesis [22, 45]. Add-
itionally, BDNF may ameliorate neuronal dysfunction and
neurodegeneration by modulating 1-methyl-4-phenyl-
pyridinium (MPP+)-induced neurotoxicity [46], patho-
logic brain mitochondria function [47], or DNA repair by
stimulating transcription factors such as CREB (cyclic
AMP response element-binding protein) [48].
Recent reports by the Movement Disorder Society

(MDS) Evidence-Based Medicine Panel on non-
pharmacologic interventions for PD and the European
Physiotherapy Guideline Development Group Panel recom-
mended that future studies ought to focus on exercise-
induced neuroplasticity in humans with PD [49, 50]. To the
best of our knowledge, no reviews so far have assessed the
methodologic quality of available intervention studies or
have bundled the effect sizes of individual studies on
exercise-induced changes in BDNF blood levels in human
PD. The objective of this review was to systematically iden-
tify and appraise the evidence, methodological quality and
clinical outcomes of intervention studies on the effects of
physical exercise on endogenous production of BDNF in
human PD, to bring such insights into the clinical context
of rehabilitation for people living with PD.

Method
Data sources and search strategy
This study was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [51]. An a priori protocol [52] was
adhered to throughout the review process to minimize risk
of bias. An electronic literature search was conducted inde-
pendently by one of the authors (PH) and a research assist-
ant in the following databases: Medline (Ovid), PubMed
(NLM), Embase (Embase.com), PsycINFO (Ovid), Physio-
therapy Evidence Database (PeDro) and the Cochrane
library (Wiley). We included the following key words
(including MESH): Parkinson’s, Parkinson’s disease AND
exercise, exercise training, physical activity, therapy, phys-
ical therapy, physical exercise, physical training, exercise-

induced, exercise-enhanced AND human, people, person,
individual, patient, older, elderly, AND neurotrophic fac-
tor, growth factor, brain derived neurotropic factor, neuro-
plasticity, plasticity, AND trial, intervention, training,
treatment OR control, controlled, randomized.

Criteria for inclusion
We exclusively focused on studies evaluating the effects
of exercise interventions on brain-derived neurotrophic
factor in patients with PD. Studies were accepted when:
1) they used human participants with diagnosis of PD, 2)
they used a prospective intervention design with or
without a control group, 3) they contained physical exer-
cise training or a physical exercise intervention compo-
nent, 4) they assessed neurotrophic factor(s), 5) they were
written in English, 6) they were published in a peer-
reviewed journal. Non-human studies, non-physical exer-
cise trials, grey literature, studies using mixed populations,
single case studies, studies not specific to PD, and studies
without assessment of neurotrophic factors were excluded.
The search was conducted up to June 2017.

Review levels and data extraction
Initial citation screening (MH, PH) was based on reviewing
title and abstract (Level 1 Review) of all database search
hits. A second round was implemented (Level 2 review) in
which three independent reviewers (EvW, MN, MH) ana-
lysed the full manuscripts and performed additional refer-
ence tracking. A total of 30 papers were imported into a
widely used, web-based, production platform system for re-
views (www.covidence.org). Disagreements were resolved
in a consensus meeting (Fig. 1). Six manuscripts passed
onto full data extraction (LEVEL 3 review in covidence.org).
Data on study design, sample size and characteristics, exer-
cise dosing, clinical outcome measures and laboratory re-
sults) were extracted manually by two independent data
abstractors (MH, MN) and summarized in Table 1. Authors
of relevant publications were contacted for data when post
intervention means and/or SDs were not reported. When
two or more randomized clinical trials were available
reporting on the same outcomes, quantitative meta-analysis
(i.e., pooling using Hedges’ g) of the findings was performed
using Cochrane methodology, in Review Manager 5.3 [53].

Critical appraisal method
Appraisal of individual study methodological quality was
based on published quality assessment tools developed
jointly by methodologists from NHLBI and Research Tri-
angle Institute International (www.nhlbi.nih.gov/health-pro/
guidelines/in-develop/cardiovascular-risk-reduction/tools).
The NHLBI Appraisal tools (Additional file 1) includes

items for evaluating the internal validity, descriptive criteria
and statistical criteria of studies (Additional file 1). A qual-
ity rating (‘good’, ‘fair’, ‘poor’) was adapted from the review
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by Lim et al. [54]. Studies were considered to be of ‘good’
quality if at least 80% of the criteria were met; ‘fair’ quality
when 51% to 79% of the criteria were met, and ‘poor’ qual-
ity when less than or equal to 50% of the criteria were met.
Separate lists of methodological quality criteria were used
for randomized controlled trials, uncontrolled pre-post
studies and case control studies (Additional file 1).
Two evaluators (MH, MN) independently rated the

methodological quality of the included studies using the
NHLBI appraisal tools. Next, a kappa statistic was calcu-
lated for descriptive purposes and to investigate the agree-
ment between the two evaluators on each appraisal tool
(Additional file 1). The kappa values were interpreted using
the criteria suggested by Tooth and Ottenbacher [55], <.40
poor agreement, .40 to .60 fair or moderate agreement, .60
to .80 good agreement, and >.80 perfect or excellent agree-
ment. Additionally, we report the exact agreement among
the two evaluators before disagreements about scoring were
discussed (Additional file 1). Disagreements about scoring
were resolved through discussion. If no consensus was
reached, a third reviewer (EvW) made the final decision.

Effect size analysis
For individual RCT’s, we calculated the difference between
the pre-to the post-intervention change scores for experi-
mental and control groups. In case of MD-UPDRS-III, we
used the mean difference (MD) between the change scores
because the same outcome measure was assessed in the
trials. For BDNF, reported as serum [56] and plasma levels
[57], we used the standardized mean difference (SMD)
based on Hedges’ g by calculating the MD, divided by the
average population standard deviation (SDi). The MD or
SMD values of individual studies were averaged (pooled),
resulting in a summary effect size (SES) with correspond-
ing 95% confidence interval (CI). Following Cohen [58]
we classified effect sizes into small (<0.2), medium (0.2-
0.8), and large (>0.8). The I2 statistic was calculated to de-
termine between-study variation [59]. In case of statistical
heterogeneity (I2 ≥50%,) we applied a random-effects
model. For I2 <50 % a fixed-effect model was applied.
Two studies, one prospective study on exercise-induced

changes in BDNF tyrosine receptor kinase signaling (BDNF-
TrkB) [60] and the prospective study by Zoladz and

Fig. 1 PRISMA flow diagram
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colleagues [61], were excluded from the BDNF level
effect size analysis. The study by Fontanesi et al.
[60] was excluded from the BDNF meta-analysis ana-
lysis because the authors did not report serum or
plasma BDNF levels but instead reported BDNF tyrosine
receptor kinase signaling. The study by Zoladz et al. [61]
was excluded from the BDNF meta-analysis analysis be-
cause there was significant overlap in the study participant
groups included in the paper by Zoladz et al. [61] and the
study participants included in the paper by Marusiak et al.
[62] (personal communication with Dr. Marusiak). The
more recent candidate paper by Marusiak et al. [62] with
the larger sample size (11 healthy controls and 11 patients
with PD) was chosen for inclusion.

Results
Summary of the literature
The subject demographic characteristics, study design, ex-
ercise dosing, outcome measures and results are described
in Table 1. A total of 100 participants contributed to the
studies reported in this review. For the evaluation of phys-
ical exercise on BDNF levels, data were aggregated from
two RCTs [56, 57] with a total of 52 ambulatory in- and
outpatients with mild to moderate idiopathic PD severity,
mean 7.0±1.5 years after PD diagnosis and 68±5.6 years
(mean±standard deviation) of age at the time of study en-
rollment. BDNF concentration was assessed by enzyme-
linked immunosorbent assay (ELISA) using standardized
procedures at the completion of the 28-day intervention
in the study by Frazzitta et al. [56] and at the completion
of the 90-day intervention in the study by Sajatovic et al.
[57]. Percent change BDNF levels were reported from two
pre-experimental studies (Marusiak et al. [62], Angelucci
et al. [63] Table 1), with a total of 20 ambulatory in- and
outpatients with mild to moderate idiopathic PD severity
(Hoehn and Yahr stage ≤3, range 1-3), 9.8±6.0 years (range
2-26 years) after PD diagnosis and 66.8±8.3 years of age at
the time of study enrollment. BDNF concentration was
assessed by ELISA using standardized procedures at the
completion of the 30-day intervention in the study by
Angelucci et al. [63] and at the completion of the 60-day
intervention in the study by Marusiak et al. [62].
Clinical outcomes data were aggregated from two RCTs

[56, 57]; and four pre-experimental studies [60–63] with a
total of 100 ambulatory in- and outpatients with mild to
moderate idiopathic PD severity (Hoehn and Yahr stage
≤3), 8.4±4.9 years after PD diagnosis, 68.7±6.8 years of age
at the time of study enrollment. Methodological quality
was scored for the six included studies [56, 57, 60–63]
(Additional file 1).
Across all studies the participant characteristics were

relatively homogenous in terms of years of age, PD stage,
years since diagnosis, and ambulatory status. The studies
were clinically homogenous with regards to including

stationary cycling [57, 60–63] and administration of the
MDS-UPDRS motor examination (Part III). Details
about “on” or “off” state testing or training were not pro-
vided in the study by Fontanesi et al. [60] and Frazzitta
et al. [56]. Physical exercise training, clinical outcome
evaluations and BDNF testing procedures were con-
ducted during the “on” phase in two studies [57, 63].
Zoladz et al. [61] and Marusiak et al. [62] administered
outcome measures during the “off” phase. Differences
among studies were noted regarding the use of elliptical
machines [60], resistance training [57], physical therapy
[56, 63], occupational therapy [60], treadmill training
[56, 60, 63], Wii System Fit [63], and stabilometric plat-
form [60]. All except one study reported exercise inter-
ventions being delivered by physiotherapists. Sajatovich
et al. [57] used a Parkinson peer exercise leader to lead
the exercise intervention. The setting for the interven-
tions varied between laboratory [61, 62], hospital-based in-
and out-patient [56, 60, 63] and fitness clinic-based [57].
The trial by Sajatovic et al. [57] was conducted in a
community-based setting using a group versus an in-
dividual self-management program. In the study by
Angelucci et al. [63] participants exercised in a group
setting. None of the other studies reported details
whether a group exercise intervention or an individ-
ual approach exercise intervention was used.

BDNF levels
BDNF levels assessed with laboratory measures were re-
ported in 2 RCTs [56, 57] (N = 52) and pooling resulted
in a significant homogeneous SES (SMD 2.06, 95% CI
1.36 to 2.76; Z = 5.77, P < .000001, I2 = 0%, Fig. 2).

Clinical outcomes
MDS-UPDRS-III motor examination scores were re-
ported in 2 RCTs [56, 57] (N = 52) and pooling resulted
in a significant heterogeneous SES (MD -5.53, 95% CI
-10.42 to -0.64; Z = 2.22, P = 0.03, I2 = 94%, Fig. 3). All
studies noted statistically significant improvements for
clinical outcome measures [56, 57, 60–63] (Table 1).
Few studies conducted statistical analysis between

exercise-induced BDNF blood concentration and scores
on clinical outcome measures. Marusiak et al. [62] found
a statistically significant association between interval
training induced increases in BDNF concentration and
decrease in Parkinsonian rigidity. The study by Fontanesi
et al. [60] found a statistically significant association be-
tween inpatient rehabilitation induced increases in TrkB
signaling in the lymphocytes and improvement in MDS-
UPDRS total and MDS-UPDRS-II score. The trial by
Frazzitta et al. [56] found no correlation between BDNF
blood levels and the MDS-UPDRS motor examination
score (Part III).
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Methodological quality
A kappa statistic, which accounts for chance agreements
between the two raters, was .62 for the trials by Frazzitta
et al. [56] and Sajatovic et al. [57], .55 for the studies by
Fontanesi et al. [60], Angelucci et al. [63] and Zoladz et
al. [61], and .57 for the study by Marusiak et al. [62].
The percent agreement between the two raters was 72%
to 77% (Additional file 1).
Strengths towards the internal validity of the studies

included use of masked assessors, and administration of
valid and reliable outcome measures. Four studies [56,
57, 60, 61] used assessors masked during the clinical
outcomes testing, including the two randomized con-
trolled trials [56, 57]. Five studies administered outcome
measures that were valid, reliable and assessed consist-
ently across all study participants [56, 57, 60–62]. Three
studies reported loss to follow-up after baseline testing,
which was less than 20% [60–62].
Deficiencies included the lack of an a-priori justification

for the sample size needed to detect an exercise-induced
effect on BDNF levels [60–63], and lack of masking of
the assessor conducting the BDNF assays [57, 60–63].
Additional deficiencies noted were lack of description
of adherence to the intervention, short duration of train-
ing and short follow-up, lack of details about method used
for participant recruitment into study protocol, failure

to characterize the cognitive status of patients, failure
to describe adverse events, and failure to recruit youn-
ger age patients.
Each ‘deficiency’ noted above represents an opportunity

for future research and discovery. For example, age and
physical exercise intensity may be a rate limiting factor in
activity-dependent BDNF neuroplasticity. To address pa-
tient age, a future study on the effect of physical exercise
on BDNF concentration could compare the response to
exercise by age group because younger patients with PD
typically display greater baseline physiologic reserve (e.g.,
VO2 Maximum) than older patients with PD, and may be
able to sustain physical exercise at higher physiologic in-
tensities than older patients.

Studies BDNF Assays Procedures
BDNF assay procedures were reported by all studies.
Sajatovic et al. [57] did not report if the blood sample
collection was obtained in the morning or later during
the day. Plasma samples of BDNF were assayed by using
ELISA per manufacturer instructions (Quantikine® ELISA
Human BDNF Immunoassay; R&D Systems, Minneapolis,
MN, USA). Frazzitta et al. [56] did not report blood sample
collection time but reported that serum BDNF concentra-
tions were evaluated in a capture ELISA according to the
protocol provided by the manufacturer without including

Fig. 2 Summary effect sizes for outcome of change in BDNF levels. Green squares indicate individual SES. Black colored diamond indicates the
summary effect size; RCT randomized clinical trial, SD standard deviation, Std standardized, CI Confidence Interval, I2 statistic to determine
heterogeneity, Z z-score

Fig. 3 Summary effect sizes for outcome of change in MDS-UPDRS motor score. Green squares indicate individual SES. Black colored diamond
indicates the summary effect size; RCT randomized clinical trial, SD standard deviation, CI Confidence Interval, I2 statistic to determine
heterogeneity, Z z-score
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the kit manufacturer information. Marusiak et al. [62] and
Zoladz et al. [61] assayed serum BDNF from morning
blood samples with an ELISA Kit (Promega, Wallisel-
len, Switzerland) after appropriate dilution with Block
and Sample solution (provided with the kit). Angelucci et al.
[63] analyzed serum BDNF from blood samples that
were obtained in the morning. Sandwich ELISA (R&D
Systems, USA; cat. No. DY248) was used for BDNF as-
says according to the manufacturer’s instructions. Fon-
tanesi [60] used morning blood samples for the BDNF
assays by EDTA Western Blotting.

Discussion
The present systematic review and meta-analysis is the
first to show aggregated evidence that physical exercise
training increases BDNF blood levels in human PD. The
main finding is that, in line with most pre-experimental
studies that report significant results, pooling of the two
available RCTs showed a significant SES in favour of
physical exercise training for increasing BDNF levels.
The BDNF results are paralleled by concomitant reduc-
tions in motor symptoms (UPDRS-scores), confirming
possible effects on the dopaminergic pathways. Although
our synthesis results support that controlled physical ex-
ercise training can have a positive impact on BDNF
levels, and the number of publications in human PD is
increasing, this review remains limited to a small num-
ber of studies that reported BDNF with few participants.
Nevertheless, this is, to our knowledge, the first research
synthesis study to evaluate the effects of controlled phys-
ical training trials on BDNF levels in human PD.
Our BDNF results are in line with prior human re-

search in a variety of psychiatric conditions, and a recent
review of neurotrophic factors in animal models of exer-
cise and Parkinson’s disease [42]. Studies utilizing psy-
chiatric conditions have reported clinical improvements
with increased serum BDNF levels following non-
pharmacological approaches, including exercise [64, 65],
computer-assisted cognitive enhancement in schizophre-
nia [35] and mindfulness clinical trials in bipolar-
disorder [66]. However, caution is warranted when ex-
trapolating the results from psychiatric conditions to
Parkinson’s disease because clinical measures used in
psychiatric conditions are different from the UPDRS.
Collectively, our meta-analysis found a SES of -5.53

point improvement on the motor examination part of the
UPDRS, which is beyond the minimal clinically important
difference [67]. Data from the included studies on exercise-
induced increases in BDNF blood concentration rarely
correlated with clinical outcome measures [60, 62]. Stud-
ies are needed to determine the clinical relevance of
exercise-induced increases in BDNF blood levels.
The most appropriate mode and intensity of exercise

to achieve gains in BDNF concentrations in human PD

remains controversial. For example, the 4-week intensive
rehab training in the RCT of Frazzitta et al. [56] contained
one hour of balance exercises and treadmill cue training,
embedded in a daily three-hour general rehabilitation pro-
gram but there is no information on duration of each sub-
part. In contrast, Sajatovic et al. [57] administered fast-
paced, low-resistance cycling for 20 minutes followed by
resistance training for 20 minutes using a progressive se-
quence of resistance band, 3 times a week for 12 weeks
[57]. These are quite different modes and intensity of ex-
ercise training but apparently give similar, favorable results
on blood BDNF concentration.
The kappa value of .55 to .57, for the four uncon-

trolled studies and the kappa value of .62 for the two
RCTs indicates fair to good agreement. The kappa value
suggests that the raters accounted for 55% to 62% of the
agreement over and above what would be expected by
chance alone [55]. The percent exact agreement between
the two raters – those instances for which both raters
agreed that a study fulfills a methodological quality cri-
teria – was 72% to 77%, indicating raters agreed on over
two-thirds of methodological quality items.
The evidence presented here is preliminary and does

not address several important issues inherent to BDNF
blood levels testing. BDNF has attracted increasing inter-
est as potential biomarker to support the diagnosis or
monitor the efficacy of therapies in brain disorders [64,
68]. Circulating BDNF levels can be measured in serum,
plasma or whole blood. However, the use of BDNF as bio-
marker is limited by the probable poor reproducibility of
results, likely due to the variety of methods used for sam-
ple collection and BDNF analysis, as well as the possible
variations among performance for the different ELISA kits
in term of intra-assay variation, inter-assay variation, de-
tection range, and sensitivity [69]. In addition to the tech-
nical and methodological issues discussed here, several
studies report that the socio-demographic determinants
and other factors may affect serum levels of BDNF such
as gender [70], age [71], body mass index [72], and disease
status [69, 73]. Several studies have suggested an inter-
action, with respect to circulating BDNF, between gender
and age [70, 71, 74]. Meta-analyses and reviews of clinical
studies based on the measurement of BDNF in whole
blood, serum, or plasma have reported significantly lower
BDNF levels at diagnosis in patients with mental illnesses
[73–75]. These reviews however, highlighted severe dis-
crepancies among studies, which even reported opposed
results (increase versus decrease, or no change).
BDNF levels have also demonstrated to be affected by

pharmacological treatments including antidepressant
treatments [64, 75]. Regarding description of pharmaco-
logic treatments in the included studies, only the study
by Frazzitta et al. [56] stated that, in order to minimize
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a possible polypharmacy effect, participants were en-
rolled if they were currently taking rasagiline mono-
therapy. In the studies by Fontanesi et al. [60] and
Frazzitta et al. [56], patients remained on their pharma-
cotherapy regimen throughout the study duration. Saja-
tovic et al. [57] reported that patients were on a stable
dose of levodopa medication throughout the trial. Re-
garding enrolment of participants on anti-depressant
medication, the trial by Sajatovic et al. [57] included
participants who were on a stable dose of anti-
depression medication for at least 1 month prior to trial
enrolment. The trial by Frazzitta et al. [56] excluded
patients who were on anti-depressant medication. The
studies by Fontanesi et al. [60] Zoladz et al. [61] and
Marusiak et al. [62] did not explicitly provide details
about participants’ anti-depression medication.
BDNF variability of response may relate, in part, to age,

sex, medication and dietary factors, disease duration, cog-
nitive status, air quality, or genetic factors [60, 76–82].
Studies have also shown differences in BDNF laboratory
sample collection kits that may add an additional variabil-
ity [83]. Concrete improvements to address variability in
BDNF response may include adoption of repeated mea-
sures designs in which the sample is collected repeatedly
from the same subject over time, pre and post training
intervention (which would allow for within-subject com-
parisons), or use of surrogate markers of BDNF action
(such as tyrosine receptor kinase signalling) as demon-
strated in the forward thinking study by Fontanesi [60].
Additional improvements to decrease BDNF variability
may include sampling from jugular vein catheters (instead
of peripheral veins), or from saliva [82], directly after an
exercise session.

Limitations
The main limitation of this review is the small number
of papers that were available for inclusion. Although our re-
sults are based on a small number of studies, the partici-
pant characteristics were relatively homogenous in terms of
years of age, Parkinson’s disease stage, years since diagnosis,
and ambulatory status. The studies were also homogenous
in the adoption of cycling training mode, administration of
the MDS-UPDRS and the pharmacologic characteristics of
the participants [57, 60–63]. Our study is limited to the
focus on one neurotrophic factor, exercise-induced changes
in BDNF concentrations in human PD, and not other
neurotrophic factors, which limits the generalizability to
BDNF only. Although there are a number of potential op-
portunities for including BDNF as a clinical marker of brain
health in PD [81], including outcome prediction [82], and/
or development of physical exercise treatment interventions
[84], further studies and methodological evaluations need
to take place to standardize BDNF measurement and evalu-
ate its usefulness as a clinical marker of brain health in PD.

The Cochrane Library Guidelines do not recommend
meta-analysis when the designs of the studies are too differ-
ent, if the outcomes measured are not sufficiently similar,
or if there are concerns about the quality of the studies, for
an average result across the studies to be meaningful (for
review, see http://www.cochranelibrary.com/about/about-
cochrane-systematic-reviews.html). Meta-analysis was a
small part of the current review. We included all hu-
man studies, including non-randomized controlled
studies (except case reports/single case studies as per
exclusion criteria), covering the entire body of
literature.
We emphasize that the small number of available stud-

ies is a limitation and further research is urgently needed
to provide a realistic evaluation of the possible effects of
exercise training on BDNF of PD patients. Prior inter-
national systematic reviews have evaluated effects of exer-
cise training on BDNF and cognition (e.g., Alzheimer’s)
and usually these synthesis reports also have had a small
number of studies (between 6-8) [85].
We propose that strengths of the current preliminary

meta-analysis and systematic review include: a) the manu-
script addresses a clinically important, understudied area of
neurorestorative rehabilitation research, and b) the results
challenge and seek to shift current research and clinical
practice paradigms by extending novel theoretical concepts
of physiologic use of exercise on neuroplasticity in ageing
human brain to humans living with Parkinson’s disease.

Conclusions
In summary, the presented results provide preliminary
evidence of an exercise-induced increase in BDNF blood
levels in human PD. Further high-quality, rigorously con-
ducted randomized clinical trials of physical exercise effect
on BDNF blood levels are needed to show robustness of
the presented optimistic trend and to determine the neuro-
plastic mechanisms (for review, see [86]) that link BDNF
blood levels, physical exercise, and functional outcomes in
PD.
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Additional file 1: Fulfilled items of methodological quality plus quality
criteria for randomized controlled trials (RCT) and noncontrolled studies.
All studies were scored on items concerning ‘internal validity’, ‘descriptive
criteria’ and ‘statistical criteria’. The NHLBI Appraisal tool to evaluate RCTs
consists of nine criteria for internal validity, two for descriptive criteria
and three for statistical criteria. The NHLBI Appraisal tool to evaluate
uncontrolled pre-post studies consists of four criteria for internal validity, five
criteria for descriptive criteria, and three for statistical criteria. The tool to
evaluate case control studies consists of two criteria for internal validity, six
descriptive criteria and one statistical criteria. (DOCX 15 kb)
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