15 research outputs found

    Protection and mechanism of action of a novel human respiratory syncytial virus vaccine candidate based on the extracellular domain of small hydrophobic protein

    Get PDF
    Infections with human respiratory syncytial virus (HRSV) occur globally in all age groups and can have devastating consequences in young infants. We demonstrate that a vaccine based on the extracellular domain (SHe) of the small hydrophobic (SH) protein of HRSV, reduced viral replication in challenged laboratory mice and in cotton rats. We show that this suppression of viral replication can be transferred by serum and depends on a functional IgG receptor compartment with a major contribution of FcRI and FcRIII. Using a conditional cell depletion method, we provide evidence that alveolar macrophages are involved in the protection by SHe-specific antibodies. HRSV-infected cells abundantly express SH on the cell surface and are likely the prime target of the humoral immune response elicited by SHe-based vaccination. Finally, natural infection of humans and experimental infection of mice or cotton rats does not induce a strong immune response against HRSV SHe. Using SHe as a vaccine antigen induces immune protection against HRSV by a mechanism that differs from the natural immune response and from other HRSV vaccination strategies explored to date. Hence, HRSV vaccine candidates that aim at inducing protective neutralizing antibodies or T-cell responses could be complemented with a SHe-based antigen to further improve immune protection

    A randomised control crossover trial of a theory based intervention to improve sun-safe and healthy behaviours in construction workers:Study protocol

    Get PDF
    Abstract Background Exposure to sunlight can have both positive and negative health impacts. Excessive exposure to ultra-violet (UV) radiation from the sun can cause skin cancer, however insufficient exposure to sunlight has a detrimental effect on production of Vitamin D. In the construction industry there are onsite proactive behaviours for safety, but sun-safety remains a low priority. There is limited research on understanding the barriers to adopting sun-safe behaviours and the association this may have with Vitamin D production. This paper reports a protocol for an intervention study, using text messaging in combination with a supportive smartphone App. The intervention aims to both reduce UV exposure during months with higher UV levels and promote appropriate dietary changes to boost Vitamin D levels during months with low UV levels. Method/design Approximately 60 construction workers will be recruited across the United Kingdom. A randomised control crossover trial (RCCT) will be used to test the intervention, with randomisation at site level – i.e. participants will receive both the control (no text messages or supportive App support) and intervention (daily text messages and supportive App). Using the Theory of Planned Behaviour (TPB) the intervention focuses on supporting sun-safety and healthy dietary decisions in relation to Vitamin D intake. The intervention emphasises cultivating the perception of normative support in the workplace, increasing awareness of control and self-efficacy in taking sun-protective behaviours, making healthier eating choices to boost Vitamin D, and tackling stigmas attached to image and group norms. Each study epoch will last 21Β days with intervention text messages delivered on workdays only. The supportive App will provide supplementary information about sun protective behaviours and healthy dietary choices. The primary outcome measure is 25-hydroxy-Vitamin D [25(OH)D] level (obtained using blood spot sampling), which will be taken pre and post control and intervention periods. Secondary outcome measures are two-fold, (1) using the TPB to detect changes in behaviour, and (2) quantifying UV exposure during the UK peak radiation season (April–September) using body-mounted UV sensors. Discussion This study will provide important information about the effectiveness of a technology-based intervention to promote sun-safety and healthy behaviours in outdoor construction workers. Trial registration ISRCTN15888934 retrospectively registered 15.01.2018

    Circulating Strains of Human Respiratory Syncytial Virus in Central and South America

    Get PDF
    Human respiratory syncytial virus (HRSV) is a major cause of viral lower respiratory tract infections among infants and young children. HRSV strains vary genetically and antigenically and have been classified into two broad subgroups, A and B (HRSV-A and HRSV-B, respectively). To date, little is known about the circulating strains of HRSV in Latin America. We have evaluated the genetic diversity of 96 HRSV strains by sequencing a variable region of the G protein gene of isolates collected from 2007 to 2009 in Central and South America. Our results show the presence of the two antigenic subgroups of HRSV during this period with the majority belonging to the genotype HRSV-A2

    Sub-Nucleocapsid Nanoparticles: A Nasal Vaccine against Respiratory Syncytial Virus

    Get PDF
    Background: Bronchiolitis caused by the respiratory syncytial virus (RSV) in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N), has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10–11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS). Methodology and Principal Findings: The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G). Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8+ T cells and IFN-c-producing CD4+ T cells. Conclusions/Significance: This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV

    Immunoprotectivity of HLA-A2 CTL Peptides Derived from Respiratory Syncytial Virus Fusion Protein in HLA-A2 Transgenic Mouse

    Get PDF
    Identification of HLA-restricted CD8+ T cell epitopes is important to study RSV-induced immunity and illness. We algorithmically analyzed the sequence of the fusion protein (F) of respiratory syncytial virus (RSV) and generated synthetic peptides that can potentially bind to HLA-A*0201. Four out of the twenty-five 9-mer peptides tested: peptides 3 (F33–41), 13 (F214–222), 14 (F273–281), and 23 (F559–567), were found to bind to HLA-A*0201 with moderate to high affinity and were capable of inducing IFN-Ξ³ and IL-2 secretion in lymphocytes from HLA-A*0201 transgenic (HLA-Tg) mice pre-immunized with RSV or recombinant adenovirus expressing RSV F. HLA-Tg mice were immunized with these four peptides and were found to induce both Th1 and CD8+ T cell responses in in vitro secondary recall. Effector responses induced by these peptides were observed to confer differential protection against live RSV challenge. These peptides also caused better recovery of body weight loss induced by RSV. A significant reduction of lung viral load was observed in mice immunized with peptide 23, which appeared to enhance the levels of inflammatory chemokines (CCL17, CCL22, and IL-18) but did not increase eosinophil infiltration in the lungs. Whereas, significant reduction of infiltrated eosinophils induced by RSV infection was found in mice pre-immunized with peptide 13. Our results suggest that HLA-A2-restricted epitopes of RSV F protein could be useful for the development of epitope-based RSV vaccine

    Major histocompatibility complex class I cytotoxic T lymphocyte immunity to human metapneumovirus (hMPV) in individuals with previous hMPV infection and respiratory disease

    No full text
    Recently identified human metapneumovirus (hMPV) is an important respiratory pathogen in children and adults worldwide. Little is known about cytotoxic T lymphocyte (CTL) responses that may control hMPV infection in humans. To address this, we evaluated major histocompatibility complex (MHC) class I T cell immunity in 7 patients with previous hMPV respiratory disease. CTL responses were evident in most patients and to most proteins of hMPV. Individual patients had responses to at least 2 hMPV proteins (particularly the M protein) and had multiallele responses. In addition, we identified 9 CTL epitopes that are presented by human leukocyte antigen alleles of the most common MHC β€œsupertypes.” Many of these CTL epitopes are conserved across hMPV types, and there is epitope similarity between hMPV and human respiratory syncytial virus. This study provides the first report of MHC class I T cell immunity to hMPV in humans. These findings have significance for understanding cellular immunity to hMPV infection and for future vaccine developmen

    Increased number of T cells committed to IL-5 production after respiratory syncytial virus (RSV) infection of human mononuclear cells in vitro

    No full text
    We examined changes in the cytokine profile of T cells induced by in vitro infection with RSV. Isolated mononuclear cells from 27 healthy adults and six infants were infected with RSV at a concentration of 3 MOI (multiplicity of infection). After 48 h cells were restimulated with phorbol ester and ionomycin in the presence of monensin for 5 h. The intracellular expression of viral antigen, the cytokines IL-2, IL-4, IL-5, interferon-gamma (IFN-Ξ³), and the expression of surface markers were assessed by immunofluorescent staining and flow cytometry. There was a significant (P < 0.001) rise of IL-5 expression in RSV-infected cultures in comparison with uninfected cultures from the same individuals, whereas there were no changes in the expression of the other lymphokines. The increase in IL-5 generation depended on viable infectious RSV rather than inactivated virus. RSV infection as well as IL-5 production in T cells were confined to the CD8 subpopulation. However, there was no simultaneous expression of RSV antigen and IL-5. Purified T cells did not show any increase in IL-5 generation. However, when the rate of RSV infection was enhanced in monocytes by means of a specific monoclonal antibody, co-cultured T cells displayed an increase of IL-5 production compared with samples with ordinary low rate RSV infection. It is therefore likely that the increased commitment of lymphocytes to produce IL-5 after RSV infection in vitro is mediated by monocytes or other antigen-presenting cells

    Identification of a novel human leucocyte antigen-A*01-restricted cytotoxic T-lymphocyte epitope in the respiratory syncytial virus fusion protein

    No full text
    Virus-specific cytotoxic T lymphocytes (CTL) play a major role in the clearance of respiratory syncytial virus (RSV) infection. To begin monitoring the immunological response to infection, especially in infants, it is important to identify human leucocyte antigen (HLA)-restricted CTL epitopes. Herein, we used a novel, comprehensive peptide panel containing all possible 8-, 9- and 10-mer peptides spanning the RSV fusion protein to screen for novel HLA-restricted T-cell epitopes. These peptide sets were synthesized as 10-mer peptides overlapping by nine amino acids and contained corresponding 8- and 9-mer peptides generated by C-terminal truncation. Unselected and uncultured peripheral blood mononuclear cells from healthy adult subjects were screened by interferon-Ξ³ (IFN-Ξ³) Elispot assays against the peptide panel. Seven of 19 subjects displayed positive responses against 10 of the 565 peptides analysed. An HLA-A*01-restricted CTL epitope detected in three healthy adult subjects is characterized. This is the first RSV-specific memory CTL response identified in the fusion protein of RSV
    corecore