8 research outputs found
Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
This review explores how imaging techniques are being developed with a focus on deployment for crop monitoring methods. Imaging applications are discussed in relation to both field and glasshouse-based plants, and techniques are sectioned into ‘healthy and diseased plant classification’ with an emphasis on classification accuracy, early detection of stress, and disease severity. A central focus of the review is the use of hyperspectral imaging and how this is being utilised to find additional information about plant health, and the ability to predict onset of disease. A summary of techniques used to detect biotic and abiotic stress in plants is presented, including the level of accuracy associated with each method
Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs
The role of intraspecific trait variability is increasingly recognized as a key factor shaping plant fitness and community assembly worldwide. Studying the direct effects of habitat heterogeneity on trait expression of individual plants of the same species is a useful tool to quantify intraspecific trait variability locally. We investigated how habitat heterogeneity on granite inselbergs affected intraspecific trait variability of 19 functional traits in three shrub species of the family Proteaceae in south western Australia, a global biodiversity hotspot. We used pairwise comparison (single trait) and multivariate analysis (multiple traits, functional space) to detect shifts in trait patterns. Consistent with our predictions, we found that individuals developing in putatively more stressful habitats (highly sun-irradiated, shallow-soil patches on the outcrops) were characterized by trait expressions indicative of more conservative resource-related strategies when compared with plants occurring in the surrounding woodlands that were experiencing more benign ecological conditions. These results were significant for two out of three species. Granite inselbergs promoted plant longevity, a signal that these granite inselbergs might offer refugial conditions defined as protection against fire