226 research outputs found

    2.5PN kick from black-hole binaries in circular orbit: Nonspinning case

    Full text link
    Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.Comment: To appear in Proceedings of "Relativity and Gravitation - 100 Years after Einstein in Prague" Ed. J. Bicak (2013

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124

    A prospective, randomised, controlled, double-blind phase I-II clinical trial on the safety of A-Part® Gel as adhesion prophylaxis after major abdominal surgery versus non-treated group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postoperative adhesions occur when fibrous strands of internal scar tissue bind anatomical structures to one another. The most common cause of intra-abdominal adhesions is previous intra-abdominal surgical intervention. Up to 74% of intestinal obstructions are caused by post surgical adhesions. Although a variety of methods and agents have been investigated to prevent post surgical adhesions, the problem of peritoneal adhesions remains largely unsolved. Materials serving as an adhesion barrier are much needed.</p> <p>Methods/Design</p> <p>This is a prospective, randomised, controlled, patient blinded and observer blinded, single centre phase I-II trial, which evaluates the safety of A-Part<sup>® </sup>Gel as an adhesion prophylaxis after major abdominal wall surgery, in comparison to an untreated control group. 60 patients undergoing an elective median laparotomy without prior abdominal surgery are randomly allocated into two groups of a 1:1- ratio. Safety parameter and primary endpoint of the study is the occurrence of wound healing impairment or peritonitis within 28 (+10) days after surgery. The frequency of anastomotic leakage within 28 days after operation, occurrence of adverse and serious adverse events during hospital stay up to 3 months and the rate of adhesions along the scar within 3 months are defined as secondary endpoints. After hospital discharge the investigator will examine the enrolled patients at 28 (+10) days and 3 months (±14 days) after surgery.</p> <p>Discussion</p> <p>This trial aims to assess, whether the intra-peritoneal application of A-Part<sup>® </sup>Gel is safe and efficacious in the prevention of post-surgical adhesions after median laparotomy, in comparison to untreated controls.</p> <p>Trial registration</p> <p>NCT00646412</p

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    The motion of point particles in curved spacetime

    Get PDF
    This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The field's action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle -- its only effect is to contribute to the particle's inertia. What remains after subtraction is a smooth field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free (radiative) field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (part I). It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line (part II). It continues with a thorough discussion of Green's functions in curved spacetime (part III). The review concludes with a detailed derivation of each of the three equations of motion (part IV).Comment: LaTeX2e, 116 pages, 10 figures. This is the final version, as it will appear in Living Reviews in Relativit

    Determination of Membrane Protein Transporter Oligomerization in Native Tissue Using Spatial Fluorescence Intensity Fluctuation Analysis

    Get PDF
    Membrane transporter proteins exist in a complex dynamic equilibrium between various oligomeric states that include monomers, dimers, dimer of dimers and higher order oligomers. Given their sub-optical microscopic resolution size, the oligomerization state of membrane transporters is difficult to quantify without requiring tissue disruption and indirect biochemical methods. Here we present the application of a fluorescence measurement technique which combines fluorescence image moment analysis and spatial intensity distribution analysis (SpIDA) to determine the oligomerization state of membrane proteins in situ. As a model system we analyzed the oligomeric state(s) of the electrogenic sodium bicarbonate cotransporter NBCe1-A in cultured cells and in rat kidney. The approaches that we describe offer for the first time the ability to investigate the oligomeric state of membrane transporter proteins in their native state

    Breast cancer risk associated with different HRT formulations: a register-based case-control study

    Get PDF
    BACKGROUND: Previous epidemiological studies have inconsistently shown a modestly increased breast cancer risk associated with hormone replacement therapy (HRT). Limited information is available about different formulations – particularly concerning different progestins. METHODS: A case-control study was performed within Germany in collaboration with regional cancer registries and tumor centers. Up to 5 controls were matched breast cancer cases. Conditional logistic regression analysis was applied to estimate crude and adjusted odds ratios (OR) and 95% confidence intervals (95% CI). Stratified analyses were performed to compare the risk of different estrogens, progestins, and combinations. RESULTS: A total of 3593 cases of breast cancer were identified and compared with 9098 controls. The adjusted overall risk estimate for breast cancer (BC) associated with current or past use of HRT was 1.2 (1.1–1.3), and almost identical for lag times from 6 months to 6 years prior to diagnosis. No significant trend of increasing BC risk was found with increasing duration of HRT use, or time since first or last use in aggregate. Many established BC risk factors significantly modified the effect of HRT on BC risk, particularly first-degree family history of BC, higher age, lower education, higher body mass index (BMI), and never having used oral contraceptives (OCs) during lifetime. Whereas the overall risk estimates were stable, the numbers in many of the sub-analyses of HRT formulation groups (estrogens, progestins, and combinations) were too small for strong conclusions. Nevertheless, the BC risk seems not to vary much across HRT formulation subgroups. In particular, no substantial difference in BC risk was observed between HRT containing conjugated equine estrogens (CEE) or medroxyprogesterone acetate (MPA) and other formulations more common in Europe. CONCLUSION: The BC risk of HRT use is rather small. Low risk estimates for BC and a high potential for residual confounding and bias in this observational study do not permit causal conclusions. Apparently, there is not much variation of the BC risk across HRT formulations (estrogens, progestins). However, the small numbers and the overlapping nature of some of the subgroups suggest cautious interpretation

    Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for valvular heart disease (VHD). Mitral annular and aortic valve calcifications are highly prevalent in CKD patients and commonly lead to valvular stenosis and regurgitation, as well as complications including conduction system abnormalities and endocarditis. VHD, especially mitral regurgitation and aortic stenosis, is associated with significantly reduced survival among CKD patients. Knowledge related to VHD in the general population is not always applicable to CKD patients because the pathophysiology may be different, and CKD patients have a high prevalence of comorbid conditions and elevated risk for periprocedural complications and mortality. This Kidney Disease: Improving Global Outcomes (KDIGO) review of CKD and VHD seeks to improve understanding of the epidemiology, pathophysiology, diagnosis, and treatment of VHD in CKD by summarizing knowledge gaps, areas of controversy, and priorities for research
    • …
    corecore