1,793 research outputs found

    Integrated and efficient diffusion-relaxometry using ZEBRA

    Get PDF
    The emergence of multiparametric diffusion models combining diffusion and relaxometry measurements provide powerful new ways to explore tissue microstructure with the potential to provide new insights into tissue structure and function. However, their ability to provide rich analyses and the potential for clinical translation critically depends on the availability of efficient, integrated, multi-dimensional acquisitions. We propose a fully integrated sequence simultaneously sampling the acquisition parameter spaces required for T1 and T2* relaxometry and diffusion MRI. Slice-level interleaved diffusion encoding, multiple spin/gradient echoes and slice-shuffling are combined for higher efficiency, sampling flexibility and enhanced internal consistency. In-vivo data was successfully acquired on healthy adult brains. Obtained parametric maps as well as clustering results demonstrate the potential of the technique regarding its ability to provide eloquent data with an acceleration of roughly 20 compared to conventionally used approaches. The proposed integrated acquisition, called ZEBRA, offers significant acceleration and flexibility compared to existing diffusion-relaxometry studies and thus facilitates wider use of these techniques both for research-driven and clinical applications

    Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi.

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Trypanosoma rangeli and Trypanosoma cruzi are generalist trypanosomes sharing a wide range of mammalian hosts; they are transmitted by triatomine bugs, and are the only trypanosomes infecting humans in the Neotropics. Their origins, phylogenetic relationships, and emergence as human parasites have long been subjects of interest. In the present study, taxon-rich analyses (20 trypanosome species from bats and terrestrial mammals) using ssrRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH), heat shock protein-70 (HSP70) and Spliced Leader RNA sequences, and multilocus phylogenetic analyses using 11 single copy genes from 15 selected trypanosomes, provide increased resolution of relationships between species and clades, strongly supporting two main sister lineages: lineage Schizotrypanum, comprising T. cruzi and bat-restricted trypanosomes, and Tra[Tve-Tco] formed by T. rangeli, Trypanosoma vespertilionis and Trypanosoma conorhini clades. Tve comprises European T. vespertilionis and African T. vespertilionis-like of bats and bat cimicids characterised in the present study and Trypanosoma sp. Hoch reported in monkeys and herein detected in bats. Tco included the triatomine-transmitted tropicopolitan T. conorhini from rats and the African NanDoum1 trypanosome of civet (carnivore). Consistent with their very close relationships, Tra[Tve-Tco] species shared highly similar Spliced Leader RNA structures that were highly divergent from those of Schizotrypanum. In a plausible evolutionary scenario, a bat trypanosome transmitted by cimicids gave origin to the deeply rooted Tra[Tve-Tco] and Schizotrypanum lineages, and bat trypanosomes of diverse genetic backgrounds jumped to new hosts. A long and independent evolutionary history of T. rangeli more related to Old World trypanosomes from bats, rats, monkeys and civets than to Schizotrypanum spp., and the adaptation of these distantly related trypanosomes to different niches of shared mammals and vectors, is consistent with the marked differences in transmission routes, life-cycles and host-parasite interactions, resulting in T. cruzi (but not T. rangeli) being pathogenic to humans.This study was supported by grants awarded to MMGT and EPC from CNPq (National Council for Scientific and Technological Development) PROAFRICA, PROSUL and UNIVERSAL programs, CAPES (Coordination for the Improvement of Higher Education Personnel) PNIPB, PNPD and PROTAX programs, and FAPESP (São Paulo Research Foundation; process 2016/07487-0). Genome sequencing was supported by the Assembling the Tree of Life (ATOL) Project of the National Science Foundation, USA (NSF DEB-0830056), and TCC-USP (Trypanosomatid Culture Collection of the University of São Paulo) projects. OEA received PhD fellowships from CNPq (PROTAX) and COLCIENCIAS (Administrative Department of Science, Technology and Innovation, Colombia); PAO is a postdoctoral fellow of CAPES (PNPD); LL and AGCM are supported by a postdoctoral fellowship from CAPES (PROTAX)

    Protective effects of exogenous and endogenous hydrogen sulfide in mast cell-mediated pruritus and cutaneous acute inflammation in mice.

    Get PDF
    Published onlineJournal ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The recently described 'gasomediator' hydrogen sulfide (H2S) has been involved in pain mechanisms, but its effect on pruritus, a sensory modality that similarly to pain acts as a protective mechanism, is poorly known and controversial. The effects of the slow-releasing (GYY4137) and spontaneous H2S donors (Na2S and Lawesson's reagent, LR) were evaluated in histamine and compound 48/80 (C48/80)-dependent dorsal skin pruritus and inflammation in male BALB/c mice. Animals were intradermally (i.d.) injected with C48/80 (3μg/site) or histamine (1μmol/site) alone or co-injected with Na2S, LR or GYY4137 (within the 0.3-100nmol range). The involvement of endogenous H2S and KATP channel-dependent mechanism were also evaluated. Pruritus was assessed by the number of scratching bouts, whilst skin inflammation was evaluated by the extravascular accumulation of intravenously injected (125)I-albumin (plasma extravasation) and myeloperoxidase (MPO) activity (neutrophil recruitment). Histamine or C48/80 significantly evoked itching behavior paralleled by plasma extravasation and increased MPO activity. Na2S and LR significantly ameliorated histamine or C48/80-induced pruritus and inflammation, although these effects were less pronounced or absent with GYY4137. Inhibition of endogenous H2S synthesis exacerbated C48/80-induced responses, whereas the blockade of KATP channels by glibenclamide did not. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) revealed that Na2S and LR, but not GYY4137, significantly attenuated C48/80-induced histamine release from rat peritoneal mast cell in vitro. We provide first evidences that H2S exerted protective effect against acute pruritus mediated via histaminergic pathways in murine skin, thus making of H2S donors a potential alternative/complementary therapy for treatment of acute pruritus.Sao Paulo Research Foundation (Fapesp grant numbers: 2013/04.151-3, 2014/15.576-8, 2014/24.518-1) and CNPq (grant number: 163278/2012-1). GDN, MNM and SKPC are recipients of fellowships from the National Council for Scientific and Technological Development (CNPq). We thank Irene M Gouvea, Flávia B de Lira and Mauro Sucupira for their techinical support

    Hydrogen sulfide donors alleviate itch secondary to the activation of type-2 protease activated receptors (PAR-2) in mice.

    Get PDF
    Published onlineJOURNAL ARTICLEHydrogen sulfide (H2S) has been highlighted as an endogenous signaling molecule and we have previously found that it can inhibit histamine-mediated itching. Pruritus is the most common symptom of cutaneous diseases and anti-histamines are the usual treatment; however, anti-histamine-resistant pruritus is common in some clinical settings. In this way, the involvement of mediators other than histamine in the context of pruritus requires new therapeutic targets. Considering that the activation of proteinase-activated receptor 2 (PAR-2) is involved in pruritus both in rodents and humans, in this study we investigated the effect of H2S donors on the acute scratching behavior mediated by PAR-2 activation in mice, as well as some of the possible pharmacological mechanisms involved. The intradermal injection of the PAR-2 peptide agonist SLIGRL-NH2 (8-80nmol) caused a dose-dependent scratching that was unaffected by intraperitoneal pre-treatment with the histamine H1 antagonist pyrilamine (30mg/kg). Co-injection of SLIGRL-NH2 (40nmol) with either the slow-release H2S donor GYY4137 (1 and 3nmol) or the spontaneous donor NaHS (1 and 0.3nmol) significantly reduced pruritus. Co-treatment with the KATP channel blocker glibenclamide (200nmol) or the nitric oxide (NO) donor sodium nitroprusside (10nmol) abolished the antipruritic effects of NaHS; however, the specific soluble guanylyl cyclase inhibitor ODQ (30μg) had no significant effects. The transient receptor potential ankyrin type 1 (TRPA1) antagonist HC-030031 (20μg) significantly reduced SLIGRL-NH2-induced pruritus; however pruritus induced by the TRPA1 agonist AITC (1000nmol) was unaffected by NaHS. Based on these data, we conclude that pruritus secondary to PAR-2 activation can be reduced by H2S, which acts through KATP channel opening and involves NO in a cyclic guanosine monophosphate (cGMP)-independent manner. Furthermore, TRPA1 receptors mediate the pruritus induced by activation of PAR-2, but H2S does not interfere with this pathway. These results provide additional support for the development of new therapeutical alternatives, mainly intended for treatment of pruritus in patients unresponsive to anti-histamines.MNM and SKPC are recipients of fellowships from the National Council for Scientific and Technological Development (CNPq) and grants from the Sao Paulo Research Foundation (FAPESP). RT, MW and MEW would like to thank the Brian Ridge Scholarship for its support (RT)
    corecore