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ABSTRACT 

The recently described ‘gasomediator’ hydrogen sulfide (H2S) has been involved in pain 

mechanisms, but its effect on pruritus, a sensory modality that similarly to pain acts as a 

protective mechanism, is poorly known and controversial. The effects of the slow-

releasing (GYY4137) and spontaneous H2S donors (Na2S and Lawesson’s reagent, LR) 

were evaluated in histamine and compound 48/80 (C48/80)-dependent dorsal skin 

pruritus and inflammation in male BALB/c mice. Animals were intradermally (i.d.) 

injected with C48/80 (3 µg/site) or histamine (1 µmol/site) alone or co-injected with 

Na2S, LR or GYY4137 (within the 0.3 - 100 nmol range). The involvement of endogenous 

H2S and KATP channel-dependent mechanism were also evaluated. Pruritus was assessed 

by the number of scratching bouts, whilst skin inflammation was evaluated by the 



extravascular accumulation of intravenously injected 125I-albumin (plasma extravasation) 

and myeloperoxidase (MPO) activity (neutrophil recruitment). Histamine or C48/80 

significantly evoked itching behavior paralleled by plasma extravasation and increased 

MPO activity. Na2S and LR significantly ameliorated histamine or C48/80-induced 

pruritus and inflammation, although these effects were less pronounced or absent with 

GYY4137. Inhibition of endogenous H2S synthesis exacerbated C48/80-induced 

responses, whereas the blockade of KATP channels by glibenclamide did not. High-

performance liquid chromatography coupled to tandem mass spectrometry (HPLC-

MS/MS) revealed that Na2S and LR, but not GYY4137, significantly attenuated C48/80-

induced histamine release from rat peritoneal mast cell in vitro. We provide first 

evidences that H2S exerted protective effect against acute pruritus mediated via 

histaminergic pathways in murine skin, thus making of H2S donors a potential 

alternative/complementary therapy for treatment of acute pruritus. 
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1. Introduction 

 

Pruritus (itch) is an autonomous pain-independent sensation that, similarly to pain, acts 

as a distressing physiological self-protective mechanism in both humans and animals. 

This response greatly affects life quality and can be triggered by inflammatory skin 

diseases, systemic diseases, neuropathic conditions and psychogenic disorders. 

According to the etiology, it may be acute or chronic (duration longer than 6 weeks), 

localized or generalized  [1], [2]. A range of mediators, such as histamine [3], 

prostaglandins  [4], serotonin [5], bradykinin [6], cytokines [7],  endothelin-1 [8], 

leukotrienes [9], proteases [10,11], neuropeptides [12] and opioids [13] orchestrate this 

response by acting on their receptors located on the nerve terminals. Pruritus (scratching 

behavior) is also a common symptom that results from insect bites, and can be 

experimentally induced in animals by the intradermal (i.d.) injection of insect saliva or 

venom toxins [12,14,15]. 

The management of pruritus, either dependent or independent of histaminergic pathways, 

is always recommended when removal of the trigger factors does not control the itch or 

perhaps unknown. Topical (e.g. anaesthetics, antihistamines, steroids, calcineurin 

inhibitors and capsaicin cream) or systemic approach (e.g. antihistamines, antidepressants 

and immunossupressors) are normally prescribed according to the etiology  [2].  

Interestingly, over the last ten years, hydrogen sulfide (H2S) a new mediator that belongs 

to the class of endogenous gases such as nitric oxide (NO) and carbon monoxide (CO), 

has emerged and brought about divergent findings regarding its role in acute / chronic 

inflammatory responses and nociception  [16–19]. However, the use of slow-releasing 

H2S donors (such as SG-1002, diallyl trisulfide and GYY4137) and hybrid H2S-releasing 

non steroidal anti-inflammatory compounds (such as the naproxen derivative ATB-346) 



strengthens the beneficial therapeutical effects of H2S in articular inflammation [20], 

colorectal cancer [21], periodontitis [22] and pain [23] with additional gastrointestinal 

safety [24]. More recently, low serum levels of H2S has been associated with psoriasis 

[25], a disease often associated with pruritus [26]. In contrast, Wang and co-workers [27] 

showed that the i.d. injection of high doses of NaHS or Na2S, but not GYY4137, evoked 

a dose-dependent scratching behavior in mice, which is possibly related to the H2S 

releasing rate. Considering that the results on the effects of H2S on itch behavior are rather 

limited and controversial, this study was carried out to evaluate whether slow and 

spontaneous-H2S releasing donors, used at low doses, are able to reduce acute pruritus 

and the related cutaneous inflammation mediated by histamine. 

 

2. Material and methods 

 

2.1. Animals 

Male BALB/c mice (20 - 30 g) and Wistar rats (180 - 200 g) were obtained from 

the local animal care facilities and housed in groups (up to five animals per cage) under 

standard controlled conditions (22°C; 12/12 h light/dark cycle) with free access to 

commercial rodent chow and water. All the experimental protocols were approved by the 

local ethics committee (CEUA–ICB; protocol n. 33, pgs. 85, book no. 02/2010), in 

accordance with the guidelines from the Brazilian Council for Control of Animal 

Experimentation (CONCEA) and the Directive 2010/63/EU, comprising with the Animal 

Welfare Act.  

 

2.2. Induction of pruritus (itching) in the mouse dorsal skin 



Mice were transitorily anaesthetized with inhaled isoflurane (3% v/v in O2) and 

the rostral part of the back ( 2 cm) near to the neck was shaved. Histamine (1 µmol/site), 

C48/80 (3 µg/site) or its corresponding vehicle Tyrode were i.d. injected, in a volume of 

50 μl, alone or in combination with 0.3-10 nmol/site of Na2S, Lawesson’s reagent (LR; 

both, spontaneous H2S donors) or the slow-release H2S donor GYY4137. Mice were 

individually placed into a perspex transparent box (12x20x17 cm; Insight, Brazil) in a 

quiet room adapted with video camera (Sony HDR-PJ230), where the mice were daily 

acclimatized for 40 min during the two days previous to the experiments. A maximum of 

four mice were simultaneously recorded during the same period and the number of 

scratching bouts were counted as detailed in  [12]. The number of scratching bouts was 

expressed either as absolute countings or as percentage values determined in 40 min. In 

all the experiments, the investigator who quantified the scratching behavior was unaware 

of the experimental group identities.  

 

2.3. Assessment of dorsal cutaneous plasma extravasation 

Mice were anesthetized with urethane (2.5 g/kg; i.p.), the rostral back shaved, and 

100 µl of 125I–bovine serum albumin (125I–BSA, 0.037 MBq) was intravenously (i.v.) 

injected via the tail vein. Histamine (30 nmol/site), C48/80 (3 μg/site) or Tyrode were i.d. 

injected alone or co-injected with Na2S, LR or GYY4137 (1–100 nmol/site) throughout 

six randomized skin sites as previously described [28]. The result were expressed as μl of 

plasma per g of tissue or percentage based on the control values (obtained with either 

histamine or C48/80 alone). 

 

 

2.4. Pharmacological treatments 



To investigate the involvement of KATP channel in H2S donors-mediated 

protective effects, a set of mice was pretreated (- 30 min), via intraperitoneal (i.p.), with 

the KATP channel blocker, glibenclamide (10 or 30 mg/kg, i.p.  [29]) or its corresponding 

vehicle carboxymethylcellulose (CMC; 0.1 ml, i.p.). In order to establish the effective 

dose of glibenclamide, another group of mice was pretreated (- 30 min) with 

glibenclamide 10 or 30 mg/kg and then i.d. injected with the KATP channel opener, 

pinacidil (10 - 30 nmol/site; i.d.). In order to assess the role of endogenous H2S in 

histamine-induced skin pruritus and skin inflammation, two independent groups of mice 

were pretreated (- 60 min; i.p.) with the CSE and CBS inhibitors β-cyanoalanine (BCA, 

50 mg/kg) and aminooxyacetic acid (AOAA, 20 mg/kg), a CSE and CBS inhibitors, 

respectively. 

 

2.5. Biochemical analysis 

 

2.5.1. Measurement of myeloperoxidase (MPO) activity 

Mice were anaesthetized with isoflurane and i.d. injected with the test agents, as 

described above (item 2.3), and four hour later they were killed via an overdose of 

urethane followed by cervical dislocation. The injected skin sites were removed, and the 

myeloperoxidase (MPO) activity was measured as previously described  [30]. The results 

were expressed as units of MPO per mg of protein (or percentage). 

 

2.5.2. Production of H2S by mouse dorsal skin 

The endogenous H2S production in the naïve mouse dorsal skin was carried out 

based on the formation of lead sulfide, according to [31]. Briefly, skin, brain and liver 

were excised and homogenized. After centrifugation (10,000 g, 10 min, 4°C), the 



obtained supernatants (400 µg protein) was incubated with substrates (L-cysteine 10 mM 

and pyridoxal-5’-phosphate 2 mM) for 2h 30min at 37 ºC. The dark dots densities on the 

lead acetate white paper strips (12x8 cm) placed over the 96-wells microplate were 

analyzed from the digitalized images using the software ImageJ (NIH, USA). Hydrogen 

sulfide concentrations were extrapolated from a calibration curve generated with NaHS 

(1.95 - 2000 µM).  

 

2.6. Rat mast cell isolation and quantification of in vitro histamine release by HPLC-

MS/MS 

Rats (n=6) were exsanguinated under deep isoflurane anaesthesia (5% v/v in O2), 

mast cells were isolated from the peritoneal cavity and purified (95%) by Percoll gradients 

(as determined by Cytospin® preparations stained with May-Grünwald Giemsa, and 

trypan blue dye exclusion). Briefly, to 0.5 ml mast cell aliquots (4x105 cells/ml) were 

simultaneously added compound 48/80 (1 µg/ml) and the test agents (Na2S, LR or 

GYY4137 at 100–1000 µM) and incubated at 37C during 15 min. The amount of 

histamine released was quantified by high performance liquid chromatography coupled 

to an electrospray tandem mass spectrometry (HPLC-MS/MS), as described previously 

[32].  

 

2.7. Drugs and reagents  

Lawesson’s reagent (2,4-bis[4-methoxyphenyl]-1,3,2,4-dithiadiphosphatane 2,4- 

disulphide), histamine (2-[1H-imidazol-4-yl]ethanamine), pyridoxal 5′-phosphate, L-

cysteine, glibencamide (5-Chloro-N-[4-(cyclohexylureidosulfonyl) phenethyl]-2-

methoxybenzamide), phenylmethanesulfonyl fluoride (PMSF), -dianisidine 

dihydrochloride (3,3′-dimethoxybenzidine dihydrochloride), aminooxyacetic acid 



(AOAA), urethane (carbamic acid ethyl ester), HTAB (hexadecyl trimethylammonium 

bromide), trypan blue and compound 48/80 (N-methyl-p-methoxyphenethylamine) were 

purchased from Sigma Chemical Co. (St Louis, MO, USA). CMC 

(carboxymethylcellulose) was obtained from Cromoline Química Fina Ltda (Diadema, 

São Paulo, Brazil). Percoll and Na2S.9H2O were purchased from GE Healthcare Bio-

Sciences (Uppsala, Sweden) and Dinâmica Química Contemporânea Ltda (Diadema, São 

Paulo, Brazil), respectively. Isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl 

ether), hydrogen peroxide and lead acetate were purchased from Cristália (Itapira, São 

Paulo, Brazil) and Labsynth® (Diadema, São Paulo, Brazil), respectively. BCA (β-

cyanoalanine) was obtained from Cayman Chemical Company (USA) and GYY4137 was 

synthesized in house, as described in  [33]. 

 

2.8. Statistical analysis 

Data are expressed as mean ± SEM for n animals. Differences among the groups were 

analyzed by one-way ANOVA followed by Bonferroni or Dunnett’s test for multiple 

comparisons, using the software GraphPad Prism (version 4.0, San Diego, CA, USA). 

Values of P lower than 0.05 were taken as significant. 

 

3. Results  

 

3.1. Histamine or C48/80-induced pruritus is reduced by H2S donors  

As shown in Figure 1, the i.d. injection of histamine (1 µmol/site) resulted in 

significant increase of pruritus in the dorsal skin compared with the Tyrode injected 

group. The co-injection of histamine with Na2S (1 and 3 nmol/site, P < 0.05; Fig. 1A), 

LR (3 and 10 nmol/site, P < 0.05; Fig. 1B) and GYY4137 (1 nmol/site, P < 0.05; Fig. 1C) 



reduced the number of scratching bouts in a dose-dependent manner compared to 

histamine alone, except that at a higher doses both Na2S and GYY4137 failed to evoke 

this effect. The i.d. injection of higher dose of Na2S (10 nmol/site), LR (10 nmol/site) or 

GYY4137 (10 nmol/site) by itself did not evoke scratching behavior (Fig. 1A-C). 

 Similarly, the i.d. injection of C48/80 (3 µg/site), a mast cells degranulator, also 

evoked a marked number of scratching bouts in comparison with Tyrode (P < 0.05 - P < 

0.001; Fig. 2A-C). This response was significantly inhibited, but not in a dose-dependent 

fashion, by the co-injection with increasing doses of Na2S (1, 3 and 10 nmol/site, P < 

0.05; Fig 2A) or LR (0.3 - 10 nmol/site, P < 0.05 - P < 0.001; Fig 2B). GYY4137 i.d. 

injected in all tested doses (0.3 - 10 nmol/site) failed to significantly inhibit C48/80-

induced pruritus (Fig 2C). None of the H2S donors produced a significant scratching 

behavior compared to Tyrode injected group. 
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Fig. 1. Dose response relationship for H2S-releasing donors on histamine-induced 

scratching bouts. The scratching bouts evoked by i.d. injection of histamine alone or co-

injected with Na2S (0.3 - 10 nmol/site., n = 5 - 10), LR (0.3 - 10 nmol/site., n = 5 - 8) and 

GYY4137 (0.3 - 10 nmol/site., n =5 - 6) are illustrated on panels A, B and C, respectively. 



Independent groups of mice were i.d. injected only with H2S donors at higher doses. 

Dashed line represents the pruritus induced by i.d. injection of vehicle, the Tyrode 

solution. Data are expressed as mean ± SEM. **P < 0.01 –***P < 0.001 vs. Tyrode, #P < 

0.05 vs. histamine (One-way ANOVA followed by the Dunnett’s test). 
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Fig. 2. Dose-response curves for H2S-releasing donors on C48/80-induced scratching 

bouts. Panels (A), (B) and (C) show the percentage of scratching bouts evoked by C48/80 

alone (3 µg/site; i.d) and co-injected with Na2S (0.3 - 10 nmol/site, n = 5–8), LR (0.3 - 10 

nmol/site, n = 5–7) and GYY4137 (0.3 - 10 nmol/site, n = 7), respectively. A set of mice 

received only i.d. injection of the H2S donors at higher dose. Dashed line represents the 

pruritus evoked by i.d. injection of Tyrode. Data are expressed as mean ± SEM. *P < 0.05 

– ***P < 0.001 vs. Tyrode, #P < 0.05 – ###P < 0.001 vs. C48/80 alone (One-way ANOVA 

followed by the Dunnett’s test). 

 

3.2. Effects of H2S-releasing donors on dorsal skin plasma extravasation and neutrophil 

influx induced by amines (increased MPO activity) 

The i.d. injection of histamine (30 nmol/site) induced a significant (P < 0.001) 

plasma protein extravasation in the mouse dorsal skin in comparison with Tyrode (Fig. 

3). This response was dose-dependently reduced by the co-injection of Na2S (3 - 100 

nmol/site, P < 0.05; Fig. 3A) and LR (1 - 10 nmol/site, P < 0.05; Fig. 3B), but unaffected 

by GYY4137 (Fig. 3C). Neither Tyrode nor H2S donors injected i.d. produced a 

significant increase in plasma extravasation. 

The i.d. injection of C48/80 (3 µg/site) also resulted in significant (P < 0.001) 

amount of plasma extravasation in comparison with Tyrode (Fig. 4). Co-injected with 

H2S donors Na2S and LR, the plasma extravasation induced by C48/80 was significantly 

reduced (P < 0.05) at doses of 30 and 100 nmol/site (Fig. 4A and B). The simultaneous 

injection of GYY4137 with histamine failed to significantly affect the plasma 

extravasation induced by C48/80 (Fig. 4C). None of H2S donors at a higher dose (100 



nmol/site) increased significantly the microvascular permeability when i.d. injected alone 

in the mouse dorsal skin.  

After 4 hours i.d injection of C48/80 in the mouse dorsal skin (3 µg/site), a marked 

(P < 0.001) increase in MPO activity was noticed compared with Tyrode (Fig. 5). The 

i.d. co-injection of Na2S (3, 10 and 30 nmol/site; Fig. 5A), LR (10, 30 and 100 nmol/site; 

Fig. 5B) or GYY4137 (100 nmol/site; Fig. 5C) led to a significant (P < 0.05 - P < 0.001) 

inhibitory effect on C48/80-induced increased MPO activity. At a higher dose, Na2S (100 

nmol/site) failed to inhibit C48/80-induced increased MPO activity compared to this 

compound alone (Fig. 5A). H2S donors had no effects when i.d. injected alone. 
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Fig. 3. Dose-response curves of the H2S donors on plasma extravasation induced by i.d. 

injection of histamine. Panels (A), (B) and (C) show the co-injection effects of Na2S (1 - 

100 nmol/site, n = 5–7), LR (1 - 100 nmol/site, n = 5) and GYY4137 (1 - 100 nmol/site, 

n =7-10) on histamine (30 nmol/site)-induced plasma extravasation. At higher dose, H2S 

donors i.d. injected induced similar plasma extravasation to that produced by its vehicle 

Tyrode (dashed line). Data are expressed as mean ± SEM. ***P < 0.001 vs. Tyrode, #P 

< 0.05 vs. Histamine alone (One-way ANOVA followed by the Dunnett’s test).  



0

25

50

75

100

125

150

175

# #

C48/80 (3 g/site)

A

***

+        1             3              10            30           100
Na2S (nmol/site)

Na2S (100 nmol/site)

Tyrode

C
ha

ng
e 

in
 %

 o
f c

ut
an

eo
us

pl
as

m
a 

ex
tra

va
sa

tio
n 

re
la

te
d

to
 C

48
/8

0

0

25

50

75

100

125

150

175
B

***

#
#

C48/80 (3 g/site) LR (100 nmol/site)

+       1             3              10          30           100
LR (nmol/site)

TyrodeC
ha

ng
e 

in
 %

 o
f c

ut
an

eo
us

pl
as

m
a 

ex
tra

va
sa

tio
n 

re
la

te
d

to
 C

48
/8

0

0

25

50

75

100

125

150

175

+ 1 3 10 30
GYY4137 (nmol/site)

C48/80 (3 g/site)

C

100

***

GYY4137 (100 nmol/site)

C
ha

ng
e 

in
 %

 o
f c

ut
an

eo
us

pl
as

m
a 

ex
tra

va
sa

tio
n 

re
la

te
d

to
 C

48
/8

0

Tyrode

 



Fig. 4. Dose-response relationship between H2S-releasing donors on C48/80-induced 

cutaneous plasma extravasation. Panels (A), (B) and (C) illustrate response evoked by i.d. 

injection of C48/80 (3 µg/site) alone and co-injected with Na2S (1 - 100 nmol/site., n = 

6), LR (1 - 100 nmol/site., n = 8) and GYY4137 (1 - 100 nmol/site., n =10), respectively. 

At higher dose, the i.d. of H2S donors induced similar plasma extravasation to that 

produced by its vehicle Tyrode (dashed line). Data are expressed as mean ± SEM. ***P 

< 0.001 vs. Tyrode, #P < 0.05 vs. C48/80 alone (One-way ANOVA followed by the 

Dunnett’s test). 
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Fig. 5. Effects of H2S donors on C48/80-induced increased MPO activity. Panels (A), (b) 

and (C) show the MPO activity evoked by i.d. injection of C48/80 (3 µg/site) alone and 

co-injected with Na2S (1-100 nmol/site., n = 6), LR (1-100 nmol/site., n = 10) and 

GYY4137 (1-100 nmol/site ., n =8), respectively, 4 hours later. At higher doses, H2S 

donors evoked similar response to that evoked by its vehicle Tyrode (dashed line). Data 

are expressed as mean ± SEM. ***P < 0.001 vs. Tyrode, #P < 0.05 - ###P < 0.001 vs. 

C48/80 alone (One-way ANOVA followed by the Dunnett’s test).  

 

3.3. Role of endogenous H2S in C48/80-induced both pruritus and neutrophil influx 

As expected, the i.d. injection of C48/80 (3 µg/site) induced a significant increase 

on the number of scratching bouts (Fig. 6A and B) and MPO activity (Fig. 6C and D). 

The pretreatment of mice with the CSE inhibitor BCA (50 mg/kg; i.p., - 60 min) 

significantly exacerbated (P<0.05) C48/80-induced pruritus and MPO activity compared 

to control group pretreated with saline (Fig.6A and 6C), whilst the pretreatment of 

animals with the nonselective CBS inhibitor AOAA (20 mg/kg; i.p., - 60 min) did not. 

The i.d. injection of Tyrode in mice dorsal skin did not evoke a significant increase in 

MPO activity; however, the pretreatment of mice with BCA or AOAA resulted in a 

significant increase of MPO activity compared to Tyrode response in saline-pretreated 

mice (Fig. 6C and D).  
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Fig. 6. Endogenous blockade of H2S synthesis potentiated C48/80-induced pruritus and 

MPO activity in mouse dorsal skin. Panels (A) and (B) show the effects of pretreatment 

with either the CSE inhibitor, β-cyanoalanine (BCA, 50 mg/kg., -60 min) or the 

nonselective CBS inhibitor aminooxyacetic acid (AOAA, 20 mg/kg., -60 min) in the 

pruritus evoked by C48/80 (n=5-8). Panels (C) and (D) show the same effects of the same 

treatments in C48/80-induced MPO activity (n=5-8). Data are expressed as mean ± 

S.E.M. for n animals. * P <0.05 and *** P <0.001 vs. Tyrode. ##P < 0.01 and ###P < 0.001 

vs. saline pretreated mice. (One-way ANOVA followed by Bonferroni's multiple 

comparison test). 

 

3.4 Determination of H2S in mouse dorsal skin  

 The naïve mouse skin, similarly to the brain, produce a significant and equivalent 

amount of H2S ( 0.3 nmol / mg of protein/min), whereas a marked H2S generation was 

generated in the liver ( 1.2 nmol / mg of protein/min) of naïve mice (Fig. 7). 
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Fig. 7. Constitutive H2S generation in the naïve skin, liver and brain of mice. Panel A shows 

the H2S generation in the skin, liver and brain of naïve animals, expressed as nmol of H2S 

per mg of protein/min, and panel B illustrates the representative corresponding skin, liver 

and brain dark dots densities on the lead acetate white paper strip. Data are expressed as 

mean ± S.E.M. for n = 4 animals.  

 

3.5. Histamine release from mast cells activation is reduced by H2S-releasing donors 

C48/80 (1 µg/ml) markedly stimulated the release of histamine (P < 0.001) from 

rat peritoneal mast cells compared with histamine spontaneously released from mast cells 



treated only with buffer (KRP; Fig. 8). The concomitant incubation of mast cells with 

C48/80 and Na2S (100 and 1000 µM; P < 0.05 - P < 0.01) or LR (500 - 1000 µM; P < 

0.05 - P < 0.001) resulted in significant decrease of histamine release from these cells. In 

all tested concentrations, GYY4137 did not prevent histamine release from C48/80-

induced mast cell degranulation (Fig. 8). The % of histamine released from mast cells 

incubated with H2S donors alone matched with KRP value (Fig. 8).  
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Fig. 8. Spontaneous, but not slow, H2S donors reduce C48/80-induced mast cell 

degranulation. Black bar illustrates the % of histamine released from mast cells treated 

with C48/80 (1 µg/ml) in krebs ringer phosphate solution (KRP). Cross-hatched bars 

show the % of histamine release from mast cells in response to C48/80 plus Na2S, LR or 

GYY4137 (100 - 1000 µM). Data are expressed as % of histamine release. Values are 

presented as mean ± SEM of three independent experiments. ***P < 0.001 vs. KRP (basal 

release), #P < 0.05- ## P < 0.01-### P < 0.001 vs. C48/80 alone (One-way ANOVA 

followed by Bonferroni's multiple comparison test). 



 

3.6. Lack of involvement of KATP channels in the antipruritic effect of H2S 

The pretreatment of mice with glibenclamide (10 or 30 mg/kg; i.p., - 30 min) 

significantly inhibited, at both doses, the KATP channel opener pinacidil (10 and 30 

nmol/site)-induced exacerbation of plasma extravasation evoked by histamine (Fig. 9A), 

thus suggesting an effective blockade of this channel. The pretreatment of animals with 

10 mg/kg of glibenclamide did not significantly affect histamine-induced plasma 

extravasation (Fig. 9B) or pruritus (Fig. 9C) compared to histamine responses in animals 

pretreated with vehicle CMC. Likewise, glibenclamide treatment did not alter the 

protective effect of Na2S (3 or 30 nmol/site) against histamine-induced plasma 

extravasation or pruritus (Fig. 9B-C).  
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Fig. 9. Blockade of KATP channels failed to reverse Na2S-induced protective effect against 

histamine-induced plasma extravasation and pruritus. Panel (A) shows the effect of 

glibenclamide (10 or 30 mg/kg., i.p., - 30 min) or its vehicle (CMC) on pinacidil (10 or 

30 nmol/site)-induced potentiating of plasma extravasation in response to i.d. of 

histamine (30 nmol/site; n=5), whereas panels (B) and (C) show the effects of histamine 

in glibenclamide pretreated group (10 mg/kg., i.p., - 30 min) in addition to Na2S (30 

nmol/site., n = 5 - 6) and pruritus (1 µmol/site., n = 5 - 10). Data are presented as mean ± 

S.E.M. for n animals. ** P <0.01 - *** P <0.001 vs. Tyrode + CMC, ## P <0.01-### P 

<0.001 vs. histamine + CMC, +P <0.05 - +++P <0.001 vs histamine + pinacidil. (One-way 

ANOVA followed by Bonferroni's test). 

 

Discussion 

 

The major finding in this study is to show that the spontaenous H2S donors Na2S 

and LR significantly ameliorated pruritus and the acute cutaneous inflammation induced 

by histamine and C48/80 in the mouse dorsal skin, being this effect less pronounced (or 

absent) in mice treated with the slow H2S-releasing donor GYY4137, whilst the 

endogenous blockade of H2S biosynthesis aggravates skin inflammation and pruritus.  

Histamine-induced plasma extravasation (oedema) is mainly processed by 

activation of H1-histaminergic receptors and, to a lesser extent, H2 receptors expressed 

in the skin vessels of both rodents [34,35] and humans [36,37]. Herein, the simultaneous 

i.d. injection of H2S donors Na2S or LR within the 0.3-10 nmoles/site dose range, 

significantly inhibited pruritus and plasma extravasation produced by histamine, even 

though it did not follow a clear dose-dependent response. Instead, a trend to biphasic 



pattern in the scratching behavior (pruritus) and plasma protein extravasation was 

observed with these H2S donors, in particular with Na2S.  

Even though we have used smaller doses of Na2S compared to previous study 

[27], it is possible that as this compound instantaneously delivers H2S, the higher tested 

dose (100 nmol/site) led to an immediate non-physiologically concentration of H2S in the 

local microcirculation, which may be distinct from that seen in the dorsal skin. In line 

with this, we provide the first evidence that the mouse dorsal healthy skin constitutively 

produces low amounts of H2S ( 0.3 nmol of H2S per mg of protein per min), similarly 

to that produced by the brain but less than that produced by the liver. Thus, these results 

point to the same suggestion made by previous studies, in terms that the application of 

high doses of a fast H2S-releasing donors can rapidly lead to elevated concentrations of 

this mediator, which in turn may result in toxic effects, rather than the beneficial ones 

seen with low amounts of H2S [33,38–41]. 

Histamine exerts its inflammatory effects, in part, through NO generation in situ  

[35], since the blockade of NOS significantly inhibited histamine-induced plasma 

extravasation in human nasal airway [42]. Interestingly, Ali and co-workers [43] 

demonstrated that low concentration of H2S or spontaneous H2S donors reversed 

histamine, but not isoprenaline-induced vasodilatation, possibly via a direct chemical 

reaction between H2S and NO, which may lead to the formation of a nitrosothiol [44] or 

even nitroxyl species (NO-/HNO)  [45] of poor vasorelaxant activities.  

Similarly to histamine, the cationic secretagogue C48/80 also induces a marked 

pruritus behavior and skin inflammation characterized by plasma extravasation and 

neutrophil influx, except for the more pronounced response observed with the latter when 

applied at similar doses mainly due to the exocytosis of multiple preformed mediators 

from mast cells (e.g. histamine, 5-HT, etc.) on both blood vessels and neurons, via 



interactions with their respective receptors. In fact, C48/80 effects can be significantly 

inhibited by antagonists of histamine H1 receptors, 5-HT or substance P (NK1) receptors 

[36,46,47].  

C48/80-induced plasma extravasation and pruritus was partially, but significantly, 

inhibited by the simultaneous co-injection of the spontaenous H2S donors Na2S or LR, 

whereas neither histamine nor C48/80-induced plasma leakage was significantly affected 

by the slow H2S-releasing donor GYY4137. It is thus possible that a significant amount 

of H2S immediately available in the microvascular bed during the initial phases of the 

vascular response is necessary to interact with NO generated by histamine (or the 

histamine releaser C48/80), and consequently inhibit its potentiating action on 

microvascular permeability. Indeed, it is well established that plasma extravasation 

occurs immediately after the i.d. injection of chemical mediators (such as histamine), 

whereas the leukocyte recruitment into the cutaneous tissue takes longer periods of time 

(>3 h). In agreement, our results show that 4 hours after the i.d. injection of C48/80 a 

marked neutrophil influx ocurs (measured as MPO activity), and this response was 

effectively reduced by all the H2S releasing donors. It is thus possible that the GYY4137 

compound may have released enough H2S along this time, which in turn can counteract 

with the dynamic of leukocyte influx in the microcirculation in response to C48/80. 

A direct stabilizing effect of H2S on mast cells degranulation could explain  the 

reduced leukocyte influx in response to C48/80. In order to test this hypothesis we 

performed in vitro experiments using rat peritoneal mast cells stimulated with C48/80 and 

measured the release of histamine. In fact, we observed that Na2S and LR, but not 

GYY4137 prevented mast cell degranulation. In agreement with our data, Zanardo and 

co-workers [48] have shown that spontaneous H2S donors, such as Na2S, NaHS and LR, 

markedly inhibited carrageenan-induced leukocyte adhesion and infiltration in a rodent 



air pouch model. Similar results were obtained by Ekundi-Valentim and co-workers 

[16,20] in the model of carrageenan-induced synovitis in rats, and by Fiorucci and co-

workers [49] in the acetyl salycilic acid-induced gastric injury in rats. Reduced expression 

of the adhesion molecules ICAM-1, VCAM-1, LFA-1, P-selectin, E-selectin in both 

endothelium and leukocytes has been suggested as the underlying mechanism of H2S-

mediated inhibition of leukocyte influx [40,48–50].  

The activation of KATP channels by H2S has been shown as the mechanism 

underlying the inhibitory effects of this mediator in a variety of experimental approaches, 

including aspirin-induced leukocyte adherence in mesenteric venules [48] and high 

glucose-induced cardiac cells injury  [51]. However, this not seem to be the cause beyond 

the protective effects of the spontaneous H2S donors against histamine-induced pruritus 

and skin inflammation, as pretreatment of mice with glibenclamide, a selective KATP 

channels blocker, did not antagonize the protective effects of H2S, even when used at 

doses that abolish the vasodilatation induced in the mouse dorsal skin by the KATP channel 

opener pinacidil. 

Compound 48/80 has been largely used as an IgE independent activator of mast 

cells, which mainly due to histamine release (and activation of peripheral H1 and H4 

receptors), results in sensitization of afferent nerves [52,53]. Similarly to the spontaneous 

H2S donor Na2S, GYY4137 inhibited histamine-induced pruritus; however, this was not 

the case with C48/80-induced pruritus. Thus, either the intensity of response evoked by 

histamine released from C48/80 was higher than exogenous histamine when paralleled 

by the low availability of H2S released from GYY4137 in situ on the peripheral afferent 

neurons or it is possibly that C48/80 produces scratching behavior that somehow depends 

on functional changes evoked by direct activation of pruriceptors. While direct excitatory 

effects of C48/80 on dorsal root ganglion (DRG), enteric neurons and visceral afferents 



can occur independently of mast cell activation [54], other works show that the 

mechanism involved in C48/80-induced nociception is mediated by a cascade activation 

that starts after mast cell activation, including the release of mediators that can activate 

these nociceptors and promote pain [55].  

Curiously, and in contrast to our findings, a recent work by Wang and co-workers 

[27] has shown that the i.d. injection of mice with the spontaneous H2S donors NaHS and 

Na2S, at mM range (7 – 280 and 1.7 – 67, respectively), led to a marked itching behavior 

and touch-evoked itching (allokinesis), while inhibition of endogenous H2S synthesis by 

pretreatment of the mice with CSE and CBS inhibitors reduced C48/80-induced pruritus. 

Previously, Elies and co-workers [56] showed that NaHS at low concentrations (100-300 

µM) markedly inhibits Ca2+
v3.2 T-type calcium channel in HEK293 cells, while NaHS at 

high concentrations (3-10 mM) led to a marked activation of these channels, possibly due 

to the resultant high Na+ concentrations. In line with these findings, we speculated that 

the presence of these high Na+ concentrations may explain the discrepancies between our 

results and those shown in Wang's paper. We also show that inhibition of endogenous 

H2S biosynthesis by BCA, but not by AOAA, resulted in enhanced C48/80-induced 

scratching behavior in addition to increased MPO activity. Again, the C48/80-induced 

pruritus results are in contrast with those produced by Wang and co-workers [27], but the 

increament in MPO activity are agreement with previous work by Zanardo and co-

workers [48], in which they showed that animals treated with BCA exhibited enhanced 

leukocyte adherence and infiltration in an air pouch model [47]. Thus, it is possible that 

the administration route used by these authors (i.d.) may account for the discrepancies 

considering that local desensitization effects may be produced by these drugs 

independently of H2S generation. 



In addition to potentiating the scratching behavior, H2S synthesis blockade by 

BCA or AOAA has also enhanced neutrophil influx into the dorsal skin, under basal 

conditions. Furthermore, the non-selective inhibition of CBS/CSE by AOAA increased 

the basal neutrophil influx to an extent similar to that induced by C48/80, thus reflecting 

the protective role of endogenous H2S in the normal skin physiology. 

 

Conclusions 

Altogether the results shown in this study provide the first evidence that 

endogenous H2S, as well as the administration of low doses of spontaneous H2S donors, 

such as LR and Na2S, exert protective roles against histamine/mast cell-mediated acute 

pruritus and inflammation of the dorsal mouse skin, independently of H2S action on KATP 

channels. 
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