16 research outputs found

    Quantitative Analysis of Protein Phosphorylations and Interactions by Multi-Colour IP-FCM as an Input for Kinetic Modelling of Signalling Networks

    Get PDF
    BACKGROUND: To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. METHODOLOGY/PRINCIPAL FINDINGS: We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. CONCLUSIONS/SIGNIFICANCE: The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network

    Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2

    Get PDF
    Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium hirsutum (Bryozoa) were maintained for 30 days under three pCO2 conditions: natural 460±59 µatm, present-day upwelling1193±166 µatm and future upwelling 3150±446 µatm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 µatm) but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic. Only extreme future upwelling conditions impacted the tubeworm S. spirorbis, but not the bryozoans

    Once upon a time the cell membranes: 175 years of cell boundary research

    Get PDF

    Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies.

    No full text
    One of the most common human autoimmune diseases, alopecia areata (AA), is characterized by sudden, often persisting and psychologically devastating hair loss. Animal models have helped greatly to elucidate critical cellular and molecular immune pathways in AA. The two most prominent ones are inbred C3H/HeJ mice which develop an AA-like hair phenotype spontaneously or after experimental induction, and healthy human scalp skin xenotransplanted onto SCID mice, in which a phenocopy of human AA is induced by injecting IL-2-stimulated PBMCs enriched for CD56+/NKG2D+ cells intradermally. The current review critically examines the pros and cons of the available AA animal models and how they have shaped our understanding of AA pathobiology, and the development of new therapeutic strategies. AA is thought to arise when the hair follicle's (HF) natural immune privilege (IP) collapses, inducing ectopic MHC class I expression in the HF epithelium and autoantigen presentation to autoreactive CD8+ T cells. In common with other autoimmune diseases, upregulation of IFN-γ and IL-15 is critically implicated in AA pathogenesis, as are NKG2D and its ligands, MICA, and ULBP3. The C3H/HeJ mouse model was used to identify key immune cell and molecular principles in murine AA, and proof-of-principle that Janus kinase (JAK) inhibitors are suitable agents for AA management in vivo, since both IFN-γ and IL-15 signal via the JAK pathway. Instead, the humanized mouse model of AA has been used to demonstrate the previously hypothesized key role of CD8+ T cells and NKG2D+ cells in AA pathogenesis and to discover human-specific pharmacologic targets like the potassium channel Kv1.3, and to show that the PDE4 inhibitor, apremilast, inhibits AA development in human skin. As such, AA provides a model disease, in which to contemplate general challenges, opportunities, and limitations one faces when selecting appropriate animal models in preclinical research for human autoimmune diseases
    corecore