380 research outputs found

    Case Report: A patient with severe peritonitis

    Get PDF
    No Abstrac

    The Epidemiology, Management, Outcomes and Areas for Improvement of Burn Care in Central Malawi: An Observational Study

    Get PDF
    This report describes the epidemiology of burn injuries and quantifies the appropriateness of use of available interventions at Kamuzu Central Hospital, Malawi, between July 2008 and June 2009 (370 burn patients). Burns accounted for 4.4% of all injuries and 25.9% of all burns presenting to the hospital were admitted. Most patients (67.6%) were < 15 years old and 56.2% were male. The most frequent cause was scalding (51.4%). Burns occurred most frequently in the cool, dry season and in the evening. The mean burn surface area (second/third degree) was 14.1% and most burns (74%) presented within 8 h. The commonest procedure was debridement and/or amputation. The mean hospital stay was 21.1 days, in-hospital mortality was 27% and wound infection rate was 31%. Available interventions (intravenous fluids, nutrition therapy, physiotherapy) were misapplied in 59% of cases. It is concluded that primary prevention should address paediatric and scald burns, and secondary prevention should train providers to use available interventions appropriately

    The Algorithmic Origins of Life

    Full text link
    Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.Comment: 13 pages, 1 tabl

    From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors

    Get PDF
    Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors

    A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    Get PDF
    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials

    Identification and correction of previously unreported spatial phenomena using raw Illumina BeadArray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A key stage for all microarray analyses is the extraction of feature-intensities from an image. If this step goes wrong, then subsequent preprocessing and processing stages will stand little chance of rectifying the matter. Illumina employ random construction of their BeadArrays, making feature-intensity extraction even more important for the Illumina platform than for other technologies. In this paper we show that using raw Illumina data it is possible to identify, control, and perhaps correct for a range of spatial-related phenomena that affect feature-intensity extraction.</p> <p>Results</p> <p>We note that feature intensities can be unnaturally high when in the proximity of a number of phenomena relating either to the images themselves or to the layout of the beads on an array. Additionally we note that beads neighbour beads of the same type more often than one might expect, which may cause concern in some models of hybridization. We highlight issues in the identification of a bead's location, and in particular how this both affects and is affected by its intensity. Finally we show that beads can be wrongly identified in the image on either a local or array-wide scale, with obvious implications for data quality.</p> <p>Conclusions</p> <p>The image processing issues identified will often pass unnoticed by an analysis of the standard data returned from an experiment. We detail some simple diagnostics that can be implemented to identify problems of this nature, and outline approaches to correcting for such problems. These approaches require access to the raw data from the arrays, not just the summarized data usually returned, making the acquisition of such raw data highly desirable.</p

    Increased risk of cancer among relatives of patients with lung cancer in China

    Get PDF
    BACKGROUND: Genetic factors were considered as one of the risk factors for lung cancer or other cancers. The aim of this work was to determine whether a genetic predisposition accounts for such familial aggregation of cancer among relatives of lung cancer probands. METHODS: A case-control study was conducted in 800 case families identified by lung cancer patients (probands), and in 800 control families identified by the probands'spouses. The data were analysed with logistic regression analysis model. RESULTS: The data revealed a significantly greater overall risk of cancer (OR = 1.82, P < 0.01) in the proband group. The relatives of lung cancer probands maintained an increased risk of non-lung cancer (P < 0.05) after adjusting for confounder factors. The crude odds ratio of a proband family having one family member with cancer was 1.67 compared with control families. Proband families were 2.56 times more likely to have two other family members with cancer. For three cancers and four or more cancers, the risk increased to 3.50 and 5.91, respectively. The most striking differences in cancer prevalence between proband and control families were noted for cancer risk among female relatives. The strongest effects were for not only lung cancer in any female relatives (OR 2.17, 95%CI 1.60–3.64) and mothers (OR 2.78, 95%CI 1.23–5.12) and sisters (OR 2.03, 95%CI 1.26–3.97), but also non-lung cancer in females and mothers (OR 2.00, 95%CI 1.26–3.01, and OR 2.34, 95%CI 1.28–4.40, respectively). CONCLUSION: These data support the hypothesis of a genetic susceptibility to cancer in families with lung cancer, and the female genetic susceptibility to cancer might be greater than male

    Differential Levels of Stress Proteins (HSPs) in Male and Female Daphnia magna in Response to Thermal Stress: A Consequence of Sex-Related Behavioral Differences?

    Get PDF
    In two independent experiments, we compared: (1) water depth selection (and accompanying temperature selection) by male and female Daphnia magna under different kinds of environmental stress, including the presence of filamentous cyanobacteria, the risk of predation from fish, and the presence of toxic compounds; and (2) sex-dependent production of heat shock proteins (HSP60, 70, and 90) in response to a sudden change in temperature. Male D. magna selected deep water strata, which offer a relatively stable environment, and thereby avoided the threat of predation and the presence of toxic compounds in surface waters. Correlated with this behavior, males reduce their molecular defenses against stress, such as the production of heat shock proteins (HSPs), and do not maintain the physiological machinery that triggers an increase in HSP levels in response to stress. In contrast, female D. magna actively select habitats that offer optimal conditions for growth and production of offspring. Consequently, females are exposed to variable environmental conditions that may be associated with increased stress. To permit survival in these different habitats, D. magna females require molecular mechanisms to protect their cells from rapid changes in stress levels. Thus, they maintain high constitutive levels of the heat shock proteins from HSP 60, 70, and 90 families, and they have the potential to further enhance the production of the majority of these proteins under stress conditions. The results of this study indicate that the separate habitats selected by male and female D. magna result in different patterns of HSP production, leading us to hypothesize that that male and female Daphnia magna adopt different strategies to maximize the fitness of the species

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms

    Get PDF
    BACKGROUND: Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. METHODS AND FINDINGS: We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. CONCLUSIONS: We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis
    corecore