71 research outputs found

    Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography

    Get PDF
    Large area periodic nanostructures exhibit unique optical and electronic properties and have found many applications, such as photonic band-gap materials, high dense data storage, and photonic devices. We have developed a maskless photolithography method—Nanosphere Photolithography (NSP)—to produce a large area of uniform nanopatterns in the photoresist utilizing the silica micro-spheres to focus UV light. Here, we will extend the idea to fabricate metallic nanostructures using the NSP method. We produced large areas of periodic uniform nanohole array perforated in different metallic films, such as gold and aluminum. The diameters of these nanoholes are much smaller than the wavelength of UV light used and they are very uniformly distributed. The method introduced here inherently has both the advantages of photolithography and self-assembled methods. Besides, it also generates very uniform repetitive nanopatterns because the focused beam waist is almost unchanged with different sphere sizes

    Plasmofluidic Disk Resonators

    Get PDF
    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 mu m red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltageopen

    Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control

    Get PDF
    Engineering the spectral properties of fluorophores, such as the enhancement of luminescence intensity, can be achieved through coupling with surface plasmons in metallic nanostructures This process, referred to as metal-enhanced fluorescence, offers promise for a range of applications, including LEDs, sensor technology, microarrays and single-molecule studies. It becomes even more appealing when applied to colloidal semiconductor nanocrystals, which exhibit size-dependent optical properties, have high photochemical stability, and are characterized by broad excitation spectra and narrow emission bands. Other approaches have relied upon the coupling of fluorophores (typically organic dyes) to random distributions of metallic nanoparticles or nanoscale roughness in metallic films. Here, we develop a new strategy based on the highly reproducible fabrication of ordered arrays of gold nanostructures coupled to CdSe/ZnS nanocrystals dispersed in a polymer blend. We demonstrate the possibility of obtaining precise control and a high spatial selectivity of the fluorescence enhancement process

    Large-Area Fabrication of Periodic Arrays of Nanoholes in Metal Films and Their Application in Biosensing and Plasmonic-Enhanced Photovoltaics

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Plasmonics is a fast developing research area with a great potential for practical applications. However, the implementation of plasmonic devices requires low cost methodologies for the fabrication of organized metallic nanostructures that covers a relative large area (similar to 1 cm(2)). Here the patterning of periodic arrays of nanoholes (PANHs) in gold films by using a combination of interference lithography, metal deposition, and lift off is reported. The setup allows the fabrication of periodic nanostructures with hole diameters ranging from 110 to 1000 rim, for 450 and 1800 nm of periodicity, respectively. The large areas plasmonic substrates consist of 2 cm x 2 cm gold films homogeneously covered by nanoholes and gold films patterned with a regular microarray of 200 mu m diameter circular patches of PANHs. The microarray format is used for surface plasmon resonance (SPR) imaging and its potential for applications in multiplex biosensing is demonstrated. The gold films homogeneously covered by nanoholes are useful as electrodes in a thin layer organic photovoltaic. This is first example of a large area plasmonic solar cell with organized nanostructures. The fabrication approach reported here is a good candidate for the industrial-scale production of metallic substrates for plasmonic applications in photovoltaics and biosensing.202239183924NSERC strategic network for bioplasmonic systems (Biopsys)NSERC inter-american collaboration on materials research (CIAM)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Department of Foreign Affairs and International Trade of CanadaNSERCOrganization of American StatesFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore