6,899 research outputs found

    Climate Change Communication in the United Kingdom

    Get PDF
    There is a comparably lengthy history of climate change communication research in the UK that can be traced back to the late 1980s. As is the case for media research in general, most attention has historically focused on print media and elite newspapers in particular. The British public appears to have a rather ambivalent response to climate change and most people do not view it as a pressing threat. Whilst surveys suggest that the majority of citizens believe that climate change is occurring, and is at least partly caused by human activity, sceptic views have received greater prominence in the mainstream media than in many other comparable countries. Climate deniers have received considerable space on the opinion pages of some right-leaning British newspapers. This is no doubt linked to vigorous denial campaigns mounted by climate sceptic think tanks in the UK. The left-of-centre Guardian newspaper (and its counterpart Sunday edition, The Observer) has led the way on climate change reporting, far exceeding the amount of space devoted to the topic by other print news outlets, yet it has one of the lowest readerships. While traditional media remain important agenda-setters, online and social media are increasingly significant sources of news - especially for younger individuals. Future climate communication scholarship should play a vital role in informing stakeholder strategies and better understanding the complex linkages between media framing, political agendas, and public perceptions

    Source Influence on Journalistic Decisions and News Coverage of Climate Change

    Get PDF
    ISBN 9780190228620Across many parts of the globe the relationship between journalists and news sources has been transformed by digital technologies, increased reliance on public relations practitioners, and the rise of citizen journalism. With fewer gatekeepers, and the growing influence of digital and social media, identifying whose voices are authoritative in making sense of complex climate science proves an increasing challenge. An increasing array of news sources are vying for their particular perspective to be established including scientists, government, industry, environmental NGOs, individual citizens and, more recently, celebrities. The boundaries between audience, consumer and producer are less defined and the distinction between ‘factual’ and ‘opinion-based’ reporting has become more blurred. All these developments suggest the need for a more complex account of the myriad influences on journalistic decisions. More research needs to examine behind-the-scenes relations between sources and journalists, and the efforts of news sources to frame the issues or seek to silence news media attention. Also although we now know a great deal more about marginalized sources and their communication strategies we know relatively little about those of powerful multinational corporate organizations, governments and lobby groups. The shifting media environment and the networked nature of information demand a major rethinking of early media-centric approaches to examining journalist/source relations as applied to climate change. The metaphors of ‘network’ and field’ capture the diverse linkages across different spheres better than the Hierarchy of Influences model

    Peer review and citation data in predicting university rankings, a large-scale analysis

    Get PDF
    Most Performance-based Research Funding Systems (PRFS) draw on peer review and bibliometric indicators, two different method- ologies which are sometimes combined. A common argument against the use of indicators in such research evaluation exercises is their low corre- lation at the article level with peer review judgments. In this study, we analyse 191,000 papers from 154 higher education institutes which were peer reviewed in a national research evaluation exercise. We combine these data with 6.95 million citations to the original papers. We show that when citation-based indicators are applied at the institutional or departmental level, rather than at the level of individual papers, surpris- ingly large correlations with peer review judgments can be observed, up to r <= 0.802, n = 37, p < 0.001 for some disciplines. In our evaluation of ranking prediction performance based on citation data, we show we can reduce the mean rank prediction error by 25% compared to previous work. This suggests that citation-based indicators are sufficiently aligned with peer review results at the institutional level to be used to lessen the overall burden of peer review on national evaluation exercises leading to considerable cost savings

    Enhancing plasma membrane NADPH oxidase activity increases current output by diatoms in biophotovoltaic devices

    Get PDF
    Biophotovoltaic (BPV) devices employ the photosynthetic activity of microalgae or cyanobacteria to harvest light energy and generate electrical current directly as a result of the release of electrons from the algal cells. NADPH oxidases (NOX) are plasma-membrane enzymes that transport electrons from the cytosol to generate extracellular superoxide anions, and have been implicated in BPV output. In this study, we investigated NOX activity in the diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana in an attempt to understand and enhance NOX and BPV function. We found that NOX activity was linked to defined growth regimes and growth phases, and was light dependent. Crucially, current output in a BPV device correlated with NOX activity, and levels of up to 14 μA per 106 cells (approximately 500 mA.m-2) were obtained. Expression of two putative P. tricornutum NOX genes (PtNOX1 and PtNOX2) was found to correspond with the observed growth patterns of superoxide anion production and power output, suggesting these are responsible for the observed patterns of NOX activity. Crucially, we demonstrate that NOX activity levels could be enhanced via semi-continuous culturing, pointing to the possibility of maintaining long-term power output in BPV devices.This work was supported by the United Kingdom Engineering and Physical Sciences Research Council (EPSRC), grant reference EP/F047940/1.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.algal.2015.08.00

    Adenosine metabolic signature in circulating CD4+ T cells predicts remission in rheumatoid arthritis

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Objectives Long-term outcomes in rheumatoid arthritis (RA) depend on early and effective disease control. Methotrexate (MTX) remains the first-line disease modifying therapy, however there are no biomarkers with which to identify those most likely to achieve remission. To address this unmet need we explored metabolic pathways involved in MTX mechanism of action within circulating CD4+T cells in a cohort of treatment naive patients with early RA. Methods Purified CD4+T cells were isolated from peripheral blood of 68 patients with early RA commencing MTX. The expression of a range of putative MTX metabolism and mechanism of action targets were explored by flow-cytometry and transcriptional analysis. From these data significant predictors of Disease Activity Score 28-C reactive protein (DAS28-CRP) remission (&lt;2.4 at 6 months) were determined by logistic regression (clinical; flow-cytometry data) and linear modelling (gene expression data). Results Low baseline DAS28-CRP was associated with remission at 6 months (p=0.02). Expression of the ectonucleotidase CD39, involved in ATP-ADP conversion during adenosine synthesis, was higher on CD4+CD25 High regulatory T cells at baseline in those achieving remission (molecules of equivalent fluorescence 1264 vs 847; p=0.007). Expression of other adenosine signalling elements in CD4+T cells were also upregulated at baseline in patients achieving remission: AMPD1 (p&lt;0.001), ADORA2b (p=0.039) and ADORA3 (p=0.047). When combined into a single predictive metric, a combination of these variables outperformed baseline DAS28-CRP in prediction of early remission (area under the curve 0.92 vs 0.67, p=0.001) Conclusions Adenosine signalling is important in the achievement of early remission with MTX in RA and biomarkers of adenosine activity may hold utility for the stratification of therapy in early disease

    Algebraic Approach to Interacting Quantum Systems

    Full text link
    We present an algebraic framework for interacting extended quantum systems to study complex phenomena characterized by the coexistence and competition of different states of matter. We start by showing how to connect different (spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms) that we name {\it dictionaries} and prove a fundamental theorem establishing when two arbitrary languages can be connected. These mappings serve to unravel symmetries which are hidden in one representation but become manifest in another. In addition, we establish a formal link between seemingly unrelated physical phenomena by changing the language of our model description. This link leads to the idea of {\it universality} or equivalence. Moreover, we introduce the novel concept of {\it emergent symmetry} as another symmetry guiding principle. By introducing the notion of {\it hierarchical languages}, we determine the quantum phase diagram of lattice models (previously unsolved) and unveil hidden order parameters to explore new states of matter. Hierarchical languages also constitute an essential tool to provide a unified description of phases which compete and coexist. Overall, our framework provides a simple and systematic methodology to predict and discover new kinds of orders. Another aspect exploited by the present formalism is the relation between condensed matter and lattice gauge theories through quantum link models. We conclude discussing applications of these dictionaries to the area of quantum information and computation with emphasis in building new models of computation and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004

    The shifting politics of patient activism: from bio-sociality to bio-digital citizenship

    Get PDF
    No embargo required.Digital media provide novel tools for patient activists from disease- and condition-specific communities. While those with debilitating conditions or disabilities have long recognised the value of collective action for advancing their interests, digital media offers activists unparalleled opportunities to fulfil their goals. This article explores the shifting politics of ‘activism’ in the increasingly digitally mediated, commercialised context of healthcare, asking: what role have digital media played in the repertoire of activists’ strategies? And, to what extent and how has the use of such media impacted the very concept of activism? Building on sociological ideas on emergent forms of ‘biological citizenship’ and drawing on findings from an analysis of available media, including television and print news reportage, online communications, published histories, and campaign material and other information produced by activists in HIV/AIDS and breast cancer communities, we argue that digital media have profoundly shaped how ‘activism’ is enacted, both the goals pursued, and the strategies adopted, which serve to broadly align contemporary patient communities’ interests with those of science and business. This alignment, which we characterise as ‘bio-digital citizenship’, has involved a fundamental reorientation of ‘activism’ from less of a struggle for rights to more of a striving to achieve a public profile and attract funding. We conclude by calling for a reconceptualisation of ‘activism’ to more adequately reflect the workings of power in the digital age, whereby the agency and hopes of citizens are central to the workings of political rule

    Use of approximations of Hamilton-Jacobi-Bellman inequality for solving periodic optimization problems

    Full text link
    We show that necessary and sufficient conditions of optimality in periodic optimization problems can be stated in terms of a solution of the corresponding HJB inequality, the latter being equivalent to a max-min type variational problem considered on the space of continuously differentiable functions. We approximate the latter with a maximin problem on a finite dimensional subspace of the space of continuously differentiable functions and show that a solution of this problem (existing under natural controllability conditions) can be used for construction of near optimal controls. We illustrate the construction with a numerical example.Comment: 29 pages, 2 figure

    From Rotating Atomic Rings to Quantum Hall States

    Get PDF
    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic ν=1/2\nu=1/2 Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure

    Towards efficient near-infrared fluorescent organic light-emitting diodes

    Get PDF
    The energy gap law (EG-law) and aggregation quenching are the main limitations to overcome in the design of near-infrared (NIR) organic emitters. Here, we achieve unprecedented results by synergistically addressing both of these limitations. First, we propose porphyrin oligomers with increasing length to attenuate the effects of the EG -law by suppressing the non-radiative rate growth, and to increase the radiative rate via enhancement of the oscillator strength. Second, we design side chains to suppress aggregation quenching. We find that the logarithmic rate of variation in the non-radiative rate vs. EG is suppressed by an order of magnitude with respect to previous studies, and we complement this breakthrough by demonstrating organic light-emitting diodes with an average external quantum efficiency of ~1.1%, which is very promising for a heavy-metal-free 850 nm emitter. We also present a novel quantitative model of the internal quantum efficiency for active layers supporting triplet-to-singlet conversion. These results provide a general strategy for designing high-luminance NIR emitters
    • …
    corecore