15 research outputs found

    Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis

    Get PDF
    We conducted a systematic review and meta-analysis to investigate whether the use of statins could be associated with the risk of all-caused dementia, Alzheimer’s disease (AD), vascular dementia (VaD), and mild cognitive impairment (MCI). Major electronic databases were searched until December 27th, 2017 for studies investigating use of statins and incident cognitive decline in adults. Random-effects meta-analyses calculating relative risks (RRs) were conducted to synthesize effect sizes of individual studies. Twenty-five studies met eligibility criteria. Use of statins was significantly associated with a reduced risk of all-caused dementia (k = 16 studies, adjusted RR (aRR) = 0.849, 95% CI = 0.787–0.916, p = 0.000), AD (k = 14, aRR = 0.719, 95% CI = 0.576–0.899, p = 0.004), and MCI (k = 6, aRR = 0.737, 95% CI = 0.556–0.976, p = 0.033), but no meaningful effects on incident VaD (k = 3, aRR = 1.012, 95% CI = 0.620–1.652, p = 0.961). Subgroup analysis suggested that hydrophilic statins were associated with reduced risk of all-caused dementia (aRR = 0.877; CI = 0.818–0.940; p = 0.000) and possibly lower AD risk (aRR = 0.619; CI = 0.383–1.000; p = 0.050). Lipophilic statins were associated with reduced risk of AD (aRR = 0.639; CI = 0.449–0.908; p = 0.013) but not all-caused dementia (aRR = 0.738; CI = 0.475–1.146; p = 0.176). In conclusion, our meta-analysis suggests that the use of statins may reduce the risk of all-type dementia, AD, and MCI, but not of incident VaD

    Years of sunlight exposure and cataract: a case-control study in a Mediterranean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed to investigate the relation between sunlight exposure and risk of cataract.</p> <p>Methods</p> <p>We carried out a frequency-matched case-control study of 343 cases and 334 controls attending an ophthalmology outpatient clinic at a primary health-care center in a small town near Valencia, Spain.</p> <p>All cases were diagnosed as having a cataract in at least one eye based on the Lens Opacification Classification system (LOCS II). Controls had no opacities in either eye. All cases and controls were interviewed for information on outdoor exposure, "usual" diet, history of severe episodes of diarrhea illness, life-style factors and medical and socio-demographic variables. Blood antioxidant vitamin levels were also analyzed. We used logistic regression models to estimate sex and age-adjusted odds ratios (ORs) by quintiles of years of occupational outdoor exposure, adjusting for potential confounders such as smoking, alcohol consumption, serum antioxidants and education.</p> <p>Results</p> <p>No association was found between years of outdoor exposure and risk of cataract. However, exploratory analyses suggested a positive association between years of outdoor exposure at younger ages and risk of nuclear cataract later in life.</p> <p>Conclusion</p> <p>Our study does not support an association with cataract and sunlight exposure over adult life.</p

    Central but Not Systemic Administration of Ghrelin Induces Wakefulness in Mice

    Get PDF
    Ghrelin is a brain-gut peptide hormone widely known for its orexigenic and growth hormone-releasing activities. Findings from our and other laboratories indicate a role of ghrelin in sleep regulation. The effects of exogenous ghrelin on sleep-wake activity in mice are, however, unknown. The aim of the present study was to determine the sleep-modulating effects of ghrelin after central and systemic administrations in mice. Sleep-wake activity after intracerebroventricular (icv) administration of 0.2, 1 and 5 µg ghrelin and intraperitoneal injections of 40, 100, and 400 µg/kg ghrelin prior to light onset were determined in C57BL/6 mice. In addition, body temperature, motor activity and 1-hour food intake was measured after the systemic injections. Sleep effects of systemic ghrelin (40 and 400 µg/kg) injected before dark onset were also determined. Icv injection of ghrelin increased wakefulness and suppressed non-rapid-eye-movement sleep and electroencephalographic slow-wave activity in the first hour after injections. Rapid-eye-movement sleep was decreased for 2–4 hours after each dose of ghrelin. Sytemic administration of ghrelin did not induce changes in sleep-wake activity in mice at dark or light onset. Motor activity and body temperature remained unaltered and food intake was significantly increased after systemic injections of ghrelin given prior the light period. These findings indicate that the activation of central, but not peripheral, ghrelin-sensitive mechanisms elicits arousal in mice. The results are consistent with the hypothesis that the activation of the hypothalamic neuronal circuit formed by ghrelin, orexin, and neuropeptide Y neurons triggers behavioral sequence characterized by increased wakefulness, motor activity and feeding in nocturnal rodents
    corecore