13,549 research outputs found

    STORMy Interactions: Gaze and the Modulation of Mimicry in Adults on the Autism Spectrum

    Get PDF
    Mimicry involves unconsciously imitating the actions of others and is a powerful and ubiquitous behavior in social interactions. There has been a long debate over whether mimicry is abnormal in people with autism spectrum conditions (ASC) and what the causes of any differences might be. Wang and Hamilton's (2012) social top-down response modulation (STORM) model proposed that people with ASC can and do mimic but, unlike neurotypical participants, fail to modulate their mimicry according to the social context. This study used an established mimicry paradigm to test this hypothesis. In neurotypical participants, direct gaze specifically enhanced congruent hand actions as previously found; in the ASC sample, direct gaze led to faster reaction times in both congruent and incongruent movements. This result shows that mimicry is intact in ASC, but is not socially modulated by gaze, as predicted by STORM

    Moisture susceptibility and fatigue performance of hydrated lime-modified asphalt concrete : experiment and design application case study

    Get PDF
    Hydrated lime has been recognized as an effective additive used to improve asphalt concrete properties in pavement applications. However, further work is still needed to quantify the effect of hydrated lime on asphaltic concrete performance under varied weather, temperature and environmental conditions and in the application of different pavement courses. A research project has been conducted using hydrated lime to modify the asphalt concretes used for the applications of wearing (surface), levelling (binder) and base courses. A previous publication has reported the experimental study on the resistance to Marshall stability and the volumetric properties, the resilient modulus and permanent deformation at three different weather temperatures. This paper reports the second phase experimental study for material durability, which investigated the effect of hydrated lime content on moisture susceptibility when exposed to a freeze-thaw cycle, and the fatigue life. The experimental results show an improvement in the durability of the modified asphalt concrete mixtures. Optimum hydrated lime contents for different course applications are suggested based on the series experimental studies. Finally, the advantage of using the optimum mixtures for a pavement application is demonstrated

    Heavy-to-light baryonic form factors at large recoil

    Full text link
    We analyze heavy-to-light baryonic form factors at large recoil and derive the scaling behavior of these form factors in the heavy quark limit. It is shown that only one universal form factor is needed to parameterize Lambda_b to p and Lambda_b to Lambda matrix elements in the large recoil limit of light baryons, while hadronic matrix elements of Lambda_b to Sigma transition vanish in the large energy limit of Sigma baryon due to the space-time parity symmetry. The scaling law of the soft form factor eta(P^{\prime} \cdot v), P^{\prime} and v being the momentum of nucleon and the velocity of Lambda_b baryon, responsible for Lambda_b to p transitions is also derived using the nucleon distribution amplitudes in leading conformal spin. In particular, we verify that this scaling behavior is in full agreement with that from light-cone sum rule approach in the heavy-quark limit. With these form factors, we further investigate the Lambda baryon polarization asymmetry alpha in Lambda_b to Lambda gamma and the forward-backward asymmetry A_{FB} in Lambda_b to Lambda l^{+} l^{-}. Both two observables (alpha and A_{FB}) are independent of hadronic form factors in leading power of 1/m_b and in leading order of alpha_s. We also extend the analysis of hadronic matrix elements for Omega_b to Omega transitions to rare Omega_b to Omega gamma and Omega_b to Omega l^{+} l^{-} decays and find that radiative Omega_b to Omega gamma decay is probably the most promising FCNC b to s radiative baryonic decay channel. In addition, it is interesting to notice that the zero-point of forward-backward asymmetry of Omega_b to Omega l^{+} l^{-} is the same as the one for Lambda_b to Lambda l^{+} l^{-} to leading order accuracy provided that the form factors \bar{\zeta}_i (i=3, 4, 5) are numerically as small as indicated from the quark model.Comment: 19 page

    Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve

    Get PDF
    We present a coupled left atrium ‐ mitral valve model based on computed tomography scans with fibre‐reinforced hyperelastic materials. Fluid‐structure interaction is realised by using an immersed boundary‐finite element framework. Effects of pathological conditions, e.g. mitral valve regurgitation and atrial fibrillation, and geometric and structural variations, namely uniform vs non‐uniform atrial wall thickness and rule‐based vs atlas‐based fibre architectures, on the system are investigated. We show that in the case of atrial fibrillation, pulmonary venous flow reversal at late diastole disappears and the filling waves at the left atrial appendage orifice during systole have reduced magnitude. In the case of mitral regurgitation, a higher atrial pressure and disturbed flows are seen, especially during systole, when a large regurgitant jet can be found with the suppressed pulmonary venous flow. We also show that both the rule‐based and atlas‐based fibre defining methods lead to similar flow fields and atrial wall deformations. However, the changes in wall thickness from non‐uniform to uniform tend to underestimate the atrial deformation. Using a uniform but thickened wall also lowers the overall strain level. The flow velocity within the left atrial appendage, which is important in terms of appendage thrombosis, increases with the thickness of the left atrial wall. Energy analysis shows that the kinetic and dissipation energies of the flow within the left atrium are altered differently by atrial fibrillation and mitral valve regurgitation, providing a useful indication of the atrial performance in pathological situations

    Understanding the role of the 'self' in the social priming of mimicry

    Get PDF
    People have a tendency to unconsciously mimic other's actions. This mimicry has been regarded as a prosocial response which increases social affiliation. Previous research on social priming of mimicry demonstrated an assimilative relationship between mimicry and prosociality of the primed construct: prosocial primes elicit stronger mimicry whereas antisocial primes decrease mimicry. The present research extends these findings by showing that assimilative and contrasting prime-to-behavior effect can both happen on mimicry. Specifically, experiment 1 showed a robust contrast priming effect where priming antisocial behaviors induces stronger mimicry than priming prosocial behaviors. In experiment 2, we manipulated the self-relatedness of the pro/antisocial primes and further revealed that prosocial primes increase mimicry only when the social primes are self-related whereas antisocial primes increase mimicry only when the social primes are self-unrelated. In experiment 3, we used a novel cartoon movie paradigm to prime pro/antisocial behaviors and manipulated the perspective-taking when participants were watching these movies. Again, we found that prosocial primes increase mimicry only when participants took a first-person point of view whereas antisocial primes increase mimicry only when participants took a third-person point of view, which replicated the findings in experiment 2. We suggest that these three studies can be best explained by the active-self theory, which claims that the direction of prime-to-behavior effects depends on how primes are processed in relation to the 'self'

    Bus accident severity and passenger injury: evidence from Denmark

    Get PDF
    Purpose Bus safety is a concern not only in developing countries, but also in the U.S. and Europe. In Denmark, disentangling risk factors that are positively or negatively related to bus accident severity and injury occurrence to bus passengers can contribute to promote safety as an essential principle of sustainable transit and advance the vision “every accident is one too many”. Methods Bus accident data were retrieved from the national accident database for the period 2002–2011. A generalized ordered logit model allows analyzing bus accident severity and a logistic regression enables examining occurrence of injury to bus passengers. Results Bus accident severity is positively related to (i) the involvement of vulnerable road users, (ii) high speed limits, (iii) night hours, (iv) elderly drivers of the third party involved, and (v) bus drivers and other drivers crossing in yellow or red light. Occurrence of injury to bus passengers is positively related to (i) the involvement of heavy vehicles, (ii) crossing intersections in yellow or red light, (iii) open areas, (iv) high speed limits, and (v) slippery road surface. Conclusions The findings of the current study provide a comprehensive picture of the bus safety situation in Denmark and suggest the necessity of further research into bus drivers’ attitudes and perceptions of risks and road users’ perceptions of bus operations. Moreover, these findings suggest the need for further training into bus drivers’ hazard recognition skills and infrastructural solutions to forgive possible driving errors

    Tubular Structure Segmentation Using Spatial Fully Connected Network with Radial Distance Loss for 3D Medical Images

    Get PDF
    This paper presents a new spatial fully connected tubular network for 3D tubular-structure segmentation. Automatic and complete segmentation of intricate tubular structures remains an unsolved challenge in the medical image analysis. Airways and vasculature pose high demands on medical image analysis as they are elongated fine structures with calibers ranging from several tens of voxels to voxel-level resolution, branching in deeply multi-scale fashion, and with complex topological and spatial relationships. Most machine/deep learning approaches are based on intensity features and ignore spatial consistency across the network that are otherwise distinct in tubular structures. In this work, we introduce 3D slice-by-slice convolutional layers in a U-Net architecture to capture the spatial information of elongated structures. Furthermore, we present a novel loss function, coined radial distance loss, specifically designed for tubular structures. The commonly used methods of cross-entropy loss and generalized Dice loss are sensitive to volumetric variation. However, in tiny tubular structure segmentation, topological errors are as important as volumetric errors. The proposed radial distance loss places higher weight to the centerline, and this weight decreases along the radial direction. Radial distance loss can help networks focus more attention on tiny structures than on thicker tubular structures. We perform experiments on bronchus segmentation on 3D CT images. The experimental results show that compared to the baseline U-Net, our proposed network achieved improvement about 24% and 30% in Dice index and centerline over ratio
    corecore