13 research outputs found

    Diverse Effects on Mitochondrial and Nuclear Functions Elicited by Drugs and Genetic Knockdowns in Bloodstream Stage Trypanosoma brucei

    Get PDF
    The parasite Trypanosoma brucei causes human African trypanosomiasis, which is fatal unless treated. Currently used drugs are toxic, difficult to administer, and often are no longer effective due to drug resistance. The search for new drugs is long and expensive, and determining which compounds are worth pursuing is a key challenge in that process. In this study we sought to determine whether different compounds elicited different responses in the mammalian-infective stage of the parasite. We also examined whether genetic knockdown of parasite molecules led to similar responses. Our results show that, depending on the treatment, the replication of the parasite genomes, proper division of the cell, and mitochondrial function can be affected. Surprisingly, these different responses were not able to predict which compounds affected the long term proliferative potential of T. brucei. We found that some of the compounds had irreversible effects on the parasites within one day, so that even cells that appeared healthy could not proliferate. We suggest that determining which compounds set the parasites on a one-way journey to death may provide a means of identifying those that could lead to drugs with high efficacy

    TbPIF5 Is a Trypanosoma brucei Mitochondrial DNA Helicase Involved in Processing of Minicircle Okazaki Fragments

    Get PDF
    Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments

    DNA Polymerase Beta Participates in Mitochondrial DNA Repair

    No full text

    Cell cycle and cleavage events during in vitro cultivation of bloodstream forms of Trypanosoma lewisi, a zoonotic pathogen

    No full text
    Trypanosoma (Herpetosoma) lewisi is a globally distributed rat trypanosome, currently considered as a zoonotic pathogen; however, a detailed understanding of the morphological events occurring during the cell cycle is lacking. This study aimed to investigate the cell cycle morphology and cleavage events of Trypanosoma lewisi (T. lewisi) during in vitro cultivation. By establishing in vitro cultivation of T. lewisi at 37°C, various cell morphologies and stages could be observed. We have provided a quantitative analysis of the morphological events during T. lewisi proliferation. We confirmed a generation time of 12.14 ± 0.79 hours, which is similar to that in vivo (12.21 ± 0.14 hours). We also found that there are two distinct cell cycles, with a two-way transformation connection in the developmental status of this parasite, which was contrasted with the previous model of multiple division patterns seen in T. lewisi. We quantified the timing of cell cycle phases (G1n, 0.56 U; Sn, 0.14 U; G2n, 0.16 U; M, 0.06 U; C, 0.08 U; G1k, 0.65 U; Sk, 0.10 U; G2k, 0.17 U; D, 0.03 U; A, 0.05 U) and their morphological characteristics, particularly with respect to the position of kinetoplast(s) and nucleus/nuclei. Interestingly, we found that nuclear replication in T. lewisi occurred prior to kinetoplast replication, different to the order of replication found in Trypanosoma brucei and Trypanosoma cruzi, implicating a distinct cell cycle control mechanism in T. lewisi. We characterized the morphological events during the T. lewisi cell cycle and presented evidence to support the existence of two distinct cell cycles with two-way transformation between them. These results provide insights into the differentiation and evolution of this parasite and its related species. Keywords: Trypanosoma lewisi, Cell cycle, In vitro, Multiplication, Division, Zoonotic pathoge

    Stopping rules employing response rates, time to progression, and early progressive disease for phase II oncology trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Response rate (RR), the most common early means of assessing oncology drugs, is not suitable as the sole endpoint for phase II trials of drugs which induce disease stability but not regression. Time to progression (TTP) may be more sensitive to such agents, but induces recruitment delays in multistage studies. Early progressive disease (EPD) is the earliest signal of time to progression, but is less intuitive to investigators, To study drugs with unknown anti-tumour effect, we designed the Combination Stopping Rule (CSR), which allows investigators to establish a hypothesis using RR and TTP, while the program also employs early progressive disease (EPD) to assess for drug inactivity during the first stage of study accrual.</p> <p>Methods</p> <p>A computer program was created to generate stopping rules based on specified error rates, trial size, and RR and median TTP of interest and disinterest for a two-stage phase II trial. Rules were generated for stage II such that the null hypothesis (<it>H</it><sub>nul</sub>) was rejected if either RR or TTP met desired thresholds, and accepted if both did not. Assuming an exponential distribution for progression, EPD thresholds were determined based on specified TTP values. Stopping rules were generated for stage I such that <it>H</it><sub>nul </sub>was accepted and the study stopped if both RR and EPD were unacceptable.</p> <p>Results</p> <p>Patient thresholds were generated for RR, median TTP, and EPD which achieved specified error rates and which allowed early stopping based on RR and EPD. For smaller proportional differences between interesting and disinteresting values of RR or TTP, larger trials are required to maintain alpha error, and early stopping is more common with a larger first stage.</p> <p>Conclusion</p> <p>Stopping rules are provided for phase II trials for drugs which have either a desirable RR or TTP. In addition, early stopping can be achieved using RR and EPD.</p

    Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence

    Get PDF
    Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment
    corecore