5 research outputs found
GPVI and GPIbα Mediate Staphylococcal Superantigen-Like Protein 5 (SSL5) Induced Platelet Activation and Direct toward Glycans as Potential Inhibitors
Background
Staphylococcus aureus (S. aureus) is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5) has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects.
Methodology/Principal Findings
In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro.
Conclusions/Significance
These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in viv
Pan-selectin antagonism improves psoriasis manifestation in mice and man
The selectin family of vascular cell adhesion molecules is comprised of structurally related carbohydrate binding proteins, which mediate the initial rolling of leukocytes on the activated vascular endothelium. Because this process is one of the crucial events in initiating and maintaining inflammation, selectins are proposed to be an attractive target for the development of new antiinflammatory therapeutics. Here, we demonstrate that the synthetic pan-selectin antagonist bimosiamose is effective in pre-clinical models of psoriasis as well as in psoriatic patients. In vitro bimosiamose proved to be inhibitory to E- or P-selectin dependent lymphocyte adhesion under flow conditions. Using xenogeneic transplantation models, bimosiamose reduced disease severity as well as development of psoriatic plaques in symptomless psoriatic skin. The administration of bimosiamose in patients suffering from psoriasis resulted in a reduction of epidermal thickness and lymphocyte infiltration. The clinical improvement was statistically significant ( P =0.02) as analyzed by comparison of psoriasis area and severity index before and after treatment. Assessment of safety parameters showed no abnormal findings. These data suggest that pan-selectin antagonism may be a promising strategy for the treatment of psoriasis and other inflammatory diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47253/1/403_2005_Article_626.pd