58 research outputs found

    Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutie`res syndrome

    Get PDF
    Objective. Aicardi-Goutie`res syndrome (AGS) isan early-onset encephalopathy resembling congenitalviral infection that is characterized by basal gangliacalcifications, loss of white matter, cerebrospinal fluid(CSF) lymphocytosis, and elevated interferon- levels inthe CSF. Studies have shown that AGS is an autosomalrecessivedisease linked to mutations in 5 genes, encodingthe 3 -repair DNA exonuclease 1 (TREX1), the 3subunits of ribonuclease H2 (RNASEH2A–C), and sterilealpha motif domain and HD domain–containingprotein 1 (SAMHD1). In this study we further characterizedthe phenotypic spectrum of this disease.Methods. Clinical and laboratory data were obtainedfrom 26 patients fulfilling the clinical diagnosticcriteria for AGS. Genomic DNA was screened for mutationsin all 5 AGS genes by direct sequencing, and serawere analyzed for autoantibodies.Results. In 20 patients with AGS, 20 mutations,12 of which were novel, were identified in all 5 AGSgenes. Clinical and laboratory investigations revealed ahigh prevalence of features (some not previously describedin patients with AGS) that are commonly seen inpatients with systemic lupus erythematosus (SLE), suchas thrombocytopenia, leukocytopenia, antinuclear antibodies,erythematous lesions, oral ulcers, and arthritis,which were observed in 12 (60%) of 20 patients withAGS. Moreover, the coexistence of AGS and SLE, wasfor the first time, demonstrated in 2 patients withmolecularly proven AGS.Conclusion. These findings expand the phenotypicspectrum of lupus erythematosus in AGS andprovide further insight into its disease mechanisms by showing that activation of the innate immune system asa result of inherited defects in nucleic acid metabolismcould lead to systemic autoimmunity

    Genetic Variation Stimulated by Epigenetic Modification

    Get PDF
    Homologous recombination is essential for maintaining genomic integrity. A common repair mechanism, it uses a homologous or homeologous donor as a template for repair of a damaged target gene. Such repair must be regulated, both to identify appropriate donors for repair, and to avoid excess or inappropriate recombination. We show that modifications of donor chromatin structure can promote homology-directed repair. These experiments demonstrate that either the activator VP16 or the histone chaperone, HIRA, accelerated gene conversion approximately 10-fold when tethered within the donor array for Ig gene conversion in the chicken B cell line DT40. VP16 greatly increased levels of acetylated histones H3 and H4, while tethered HIRA did not affect histone acetylation, but caused an increase in local nucleosome density and levels of histone H3.3. Thus, epigenetic modification can stimulate genetic variation. The evidence that distinct activating modifications can promote similar functional outcomes suggests that a variety of chromatin changes may regulate homologous recombination, and that disregulation of epigenetic marks may have deleterious genetic consequences

    ERK1 Regulates the Hematopoietic Stem Cell Niches

    Get PDF
    The mitogen-activated protein kinases (MAPK) ERK1 and ERK2 are among the major signal transduction molecules but little is known about their specific functions in vivo. ERK activity is provided by two isoforms, ERK1 and ERK2, which are ubiquitously expressed and share activators and substrates. However, there are not in vivo studies which have reported a role for ERK1 or ERK2 in HSCs and the bone marrow microenvironment. The present study shows that the ERK1-deficient mice present a mild osteopetrosis phenotype. The lodging and the homing abilities of the ERK1−/− HSC are impaired, suggesting that the ERK1−/−-defective environment may affect the engrafment of HSCs. Serial transplantations demonstrate that ERK1 is involved in the maintenance of an appropriate medullar microenvironment, but that the intrinsic properties of HSCs are not altered by the ERK1−/− defective microenvironment. Deletion of ERK1 impaired in vitro and in vivo osteoclastogenesis while osteoblasts were unaffected. As osteoclasts derive from precursors of the monocyte/macrophage lineage, investigation of the monocytic compartment was performed. In vivo analysis of the myeloid lineage progenitors revealed that the frequency of CMPs increased by approximately 1.3-fold, while the frequency of GMPs significantly decreased by almost 2-fold, compared with the respective WT compartments. The overall mononuclear-phagocyte lineage development was compromised in these mice due to a reduced expression of the M-CSF receptor on myeloid progenitors. These results show that the cellular targets of ERK1 are M-CSFR-responsive cells, upstream to osteoclasts. While ERK1 is well known to be activated by M-CSF, the present results are the first to point out an ERK1-dependent M-CSFR regulation on hematopoietic progenitors. This study reinforces the hypothesis of an active cross-talk between HSCs, their progeny and bone cells in the maintenance of the homeostasis of these compartments

    Cost-Effectiveness Analysis of Diagnostic Options for Pneumocystis Pneumonia (PCP)

    Get PDF
    Diagnosis of Pneumocystis jirovecii pneumonia (PCP) is challenging, particularly in developing countries. Highly sensitive diagnostic methods are costly, while less expensive methods often lack sensitivity or specificity. Cost-effectiveness comparisons of the various diagnostic options have not been presented.We compared cost-effectiveness, as measured by cost per life-years gained and proportion of patients successfully diagnosed and treated, of 33 PCP diagnostic options, involving combinations of specimen collection methods [oral washes, induced and expectorated sputum, and bronchoalveolar lavage (BAL)] and laboratory diagnostic procedures [various staining procedures or polymerase chain reactions (PCR)], or clinical diagnosis with chest x-ray alone. Our analyses were conducted from the perspective of the government payer among ambulatory, HIV-infected patients with symptoms of pneumonia presenting to HIV clinics and hospitals in South Africa. Costing data were obtained from the National Institutes of Communicable Diseases in South Africa. At 50% disease prevalence, diagnostic procedures involving expectorated sputum with any PCR method, or induced sputum with nested or real-time PCR, were all highly cost-effective, successfully treating 77-90% of patients at 2651perlifeyeargained.ProceduresusingBALspecimensweresignificantlymoreexpensivewithoutaddedbenefit,successfullytreating689026-51 per life-year gained. Procedures using BAL specimens were significantly more expensive without added benefit, successfully treating 68-90% of patients at costs of 189-232 per life-year gained. A relatively cost-effective diagnostic procedure that did not require PCR was Toluidine Blue O staining of induced sputum (25perlifeyeargained,successfullytreating6825 per life-year gained, successfully treating 68% of patients). Diagnosis using chest x-rays alone resulted in successful treatment of 77% of patients, though cost-effectiveness was reduced (109 per life-year gained) compared with several molecular diagnostic options.For diagnosis of PCP, use of PCR technologies, when combined with less-invasive patient specimens such as expectorated or induced sputum, represent more cost-effective options than any diagnostic procedure using BAL, or chest x-ray alone

    Paracrine interactions between primary human macrophages and human fibroblasts enhance murine mammary gland humanization in vivo

    Get PDF
    Abstract Introduction Macrophages comprise an essential component of the mammary microenvironment necessary for normal gland development. However, there is no viable in vivo model to study their role in normal human breast function. We hypothesized that adding primary human macrophages to the murine mammary gland would enhance and provide a novel approach to examine immune-stromal cell interactions during the humanization process. Methods Primary human macrophages, in the presence or absence of ectopic estrogen stimulation, were used to humanize mouse mammary glands. Mechanisms of enhanced humanization were identified by cytokine/chemokine ELISAs, zymography, western analysis, invasion and proliferation assays; results were confirmed with immunohistological analysis. Results The combined treatment of macrophages and estrogen stimulation significantly enhanced the percentage of the total gland humanized and the engraftment/outgrowth success rate. Timecourse analysis revealed the disappearance of the human macrophages by two weeks post-injection, suggesting that the improved overall growth and invasiveness of the fibroblasts provided a larger stromal bed for epithelial cell proliferation and structure formation. Confirming their promotion of fibroblasts humanization, estrogen-stimulated macrophages significantly enhanced fibroblast proliferation and invasion in vitro, as well as significantly increased proliferating cell nuclear antigen (PCNA) positive cells in humanized glands. Cytokine/chemokine ELISAs, zymography and western analyses identified TNFα and MMP9 as potential mechanisms by which estrogen-stimulated macrophages enhanced humanization. Specific inhibitors to TNFα and MMP9 validated the effects of these molecules on fibroblast behavior in vitro, as well as by immunohistochemical analysis of humanized glands for human-specific MMP9 expression. Lastly, glands humanized with macrophages had enhanced engraftment and tumor growth compared to glands humanized with fibroblasts alone. Conclusions Herein, we demonstrate intricate immune and stromal cell paracrine interactions in a humanized in vivo model system. We confirmed our in vivo results with in vitro analyses, highlighting the value of this model to interchangeably substantiate in vitro and in vivo results. It is critical to understand the signaling networks that drive paracrine cell interactions, for tumor cells exploit these signaling mechanisms to support their growth and invasive properties. This report presents a dynamic in vivo model to study primary human immune/fibroblast/epithelial interactions and to advance our knowledge of the stromal-derived signals that promote tumorigenesis

    Intertidal meiofauna of a high-latitude glacial Arctic fiord (Kongsfjorden, Svalbard) with emphasis on the structure of free-living nematode communities. Polar Biol

    No full text
    Abstract Meiofauna communities of four intertidal sites, two sheltered and two more exposed, in Kongsfjorden (Svalbard) were investigated in summer 2001 at two different tidal levels (i.e. the low-water line and close below the driftline, referred to as mid-water (MW) level). A total of seven meiofaunal higher taxa were recorded with nematodes, oligochaetes and turbellarians being numerically dominant. Mean total meiofaunal densities ranged between 50 ind. 10 cm À2 and 903 ind. 10 cm À2 . Our data showed a clear decrease in total meiofaunal densities with increasing coarseness of the sediment. Total meiofaunal biomass varied from 0.2 g dwt m À2 to 2 g dwt m À2 and, in general, was high even at low meiofaunal densities, i.e. larger interstitial spaces in coarser sediments supported larger meiofauna, especially turbellarians. The results on the vertical distribution of meiofauna contrasted sharply with typical meiobenthic depth profiles on other beaches, probably in response to ice-scouring and concomitant salinity fluctuations. Oligochaetes were the most abundant taxon, with a peak density of 641 ind. 10 cm À2 at Breoyane Island. They were mainly comprised of juvenile Enchytraeidae, which prohibited identification to species/genus level. Nematode densities ranged between 4 ind. 10 cm À2 and 327 ind. 10 cm À2 . Nematodes were identified up to genus level and assigned to trophic guilds. In total, 28 nematode genera were identified. Oncholaimus and Theristus were the most abundant genera. The composition of the nematode community and a dominance of predators and deposit feeders were in agreement with results from other arctic and temperate beaches. Nematode genus diversity was higher at the more sheltered beaches than at the more exposed ones. Lowwater level stations also tended to harbour a more diverse nematode communities than stations at the MW level. Differences in nematode community structure between low-and MW stations of single beaches were more pronounced than community differences between different beaches and were mainly related to resources quality and availability

    Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutières syndrome

    No full text
    Objective. Aicardi-Goutières syndrome (AGS) is an early-onset encephalopathy resembling congenital viral infection that is characterized by basal ganglia calcifications, loss of white matter, cerebrospinal fluid (CSF) lymphocytosis, and elevated interferon-␣ levels in the CSF. Studies have shown that AGS is an autosomalrecessive disease linked to mutations in 5 genes, encoding the 3-repair DNA exonuclease 1 (TREX1), the 3 subunits of ribonuclease H2 (RNASEH2A-C), and sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1). In this study we further characterized the phenotypic spectrum of this disease. Methods. Clinical and laboratory data were obtained from 26 patients fulfilling the clinical diagnostic criteria for AGS. Genomic DNA was screened for mutations in all 5 AGS genes by direct sequencing, and sera were analyzed for autoantibodies. Results. In 20 patients with AGS, 20 mutations, 12 of which were novel, were identified in all 5 AGS genes. Clinical and laboratory investigations revealed a high prevalence of features (some not previously described in patients with AGS) that are commonly seen in patients with systemic lupus erythematosus (SLE), such as thrombocytopenia, leukocytopenia, antinuclear antibodies, erythematous lesions, oral ulcers, and arthritis, which were observed in 12 (60%) of 20 patients with AGS. Moreover, the coexistence of AGS and SLE, was for the first time, demonstrated in 2 patients with molecularly proven AGS. Conclusion. These findings expand the phenotypic spectrum of lupus erythematosus in AGS and provide further insight into its disease mechanisms by Supported by the Deutsche Forschungsgemeinschaft (DFG grant LE 1074/3-1)
    corecore