45 research outputs found

    The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms

    Get PDF
    Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3′ end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications

    New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Hepatocytes

    Get PDF
    Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field

    Bowel management for the treatment of pediatric fecal incontinence

    Get PDF
    Fecal incontinence is a devastating underestimated problem, affecting a large number of individuals all over the world. Most of the available literature relates to the management of adults. The treatments proposed are not uniformly successful and have little application in the pediatric population. This paper presents the experience of 30 years, implementing a bowel management program, for the treatment of fecal incontinence in over 700 pediatric patients, with a success rate of 95%. The main characteristics of the program include the identification of the characteristics of the colon of each patient; finding the specific type of enema that will clean that colon and the radiological monitoring of the process

    Maternofetal consequences of <it>Coxiella burnetii</it> infection in pregnancy: a case series of two outbreaks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high complication rate of Q fever in pregnancy is described on the basis of a limited number of cases. All pregnant women with proven Q fever regardless of clinical symptoms should therefore receive long-term cotrimoxazole therapy. But cotrimoxazole as a folic acid antagonist may cause harm to the fetus. We therefore investigated the Q fever outbreaks, Soest in 2003 and Jena in 2005, to determine the maternofetal consequences of <it>Coxiella burnetii</it> infection contracted during pregnancy.</p> <p>Methods</p> <p>Different outbreak investigation strategies were employed at the two sides. Antibody screening was performed with an indirect immunofluorescence test. Medical history and clinical data were obtained and serological follow up performed at delivery. Available placental tissue, amniotic fluid and colostrum/milk were further investigated by polymerase chain reaction and by culture.</p> <p>Results</p> <p>11 pregnant women from Soest (screening rate: 49%) and 82 pregnant women from Jena (screening rate: 27%) participated in the outbreak investigation. 11 pregnant women with an acute <it>C. burnetii</it> infection were diagnosed. Three women had symptomatic disease.</p> <p>Three women, who were infected in the first trimester, were put on long-term therapy. The remaining women received cotrimoxazole to a lesser extent (n=3), were treated with macrolides for three weeks (n=1) or after delivery (n=1), were given no treatment at all (n=2) or received antibiotics ineffective for Q fever (n=1). One woman and her foetus died of an underlying disease not related to Q fever. One woman delivered prematurely (35<sup>th</sup> week) and one child was born with syndactyly. We found no obvious association between <it>C. burnetii</it> infection and negative pregnancy outcome.</p> <p>Conclusions</p> <p>Our data do not support the general recommendation of long-term cotrimoxazole treatment for Q fever infection in pregnancy. Pregnant women with symptomatic <it>C. burnetii</it> infections and with chronic Q fever should be treated. The risk-benefit ratio of treatment in these patients, however, remains uncertain. If cotrimoxazole is administered, folinic acid has to be added.</p
    corecore