41 research outputs found

    The Hellenic type of nondeletional hereditary persistence of fetal hemoglobin results from a novel mutation (g.-109G>T) in the HBG2 gene promoter

    Get PDF
    Nondeletional hereditary persistence of fetal hemoglobin (nd-HPFH), a rare hereditary condition resulting in elevated levels of fetal hemoglobin (Hb F) in adults, is associated with promoter mutations in the human fetal globin (HBG1 and HBG2) genes. In this paper, we report a novel type of nd-HPFH due to a HBG2 gene promoter mutation (HBG2:g.-109G>T). This mutation, located at the 3′ end of the HBG2 distal CCAAT box, was initially identified in an adult female subject of Central Greek origin and results in elevated Hb F levels (4.1%) and significantly increased Gγ-globin chain production (79.2%). Family studies and DNA analysis revealed that the HBG2:g.-109G>T mutation is also found in the family members in compound heterozygosity with the HBG2:g.-158C>T single nucleotide polymorphism or the silent HBB:g.-101C>T β-thalassemia mutation, resulting in the latter case in significantly elevated Hb F levels (14.3%). Electrophoretic mobility shift analysis revealed that the HBG2:g.-109G>T mutation abolishes a transcription factor binding site, consistent with previous observations using DNA footprinting analysis, suggesting that guanine at position HBG2/1:g.-109 is critical for NF-E3 binding. These data suggest that the HBG2:g-109G>T mutation has a functional role in increasing HBG2 transcription and is responsible for the HPFH phenotype observed in our index cases

    Fine Tuning of Globin Gene Expression by DNA Methylation

    Get PDF
    Expression patterns in the globin gene cluster are subject to developmental regulation in vivo. While the γ(A) and γ(G) genes are expressed in fetal liver, both are silenced in adult erythrocytes. In order to decipher the role of DNA methylation in this process, we generated a YAC transgenic mouse system that allowed us to control γ(A) methylation during development. DNA methylation causes a 20-fold repression of γ(A) both in non-erythroid and adult erythroid cells. In erythroid cells this modification works as a dominant mechanism to repress γ gene expression, probably through changes in histone acetylation that prevent the binding of erythroid transcription factors to the promoter. These studies demonstrate that DNA methylation serves as an elegant in vivo fine-tuning device for selecting appropriate genes in the globin locus. In addition, our findings provide a mechanism for understanding the high levels of γ-globin transcription seen in patients with Hereditary Persistence of Fetal Hemoglobin, and help explain why 5azaC and butyrate compounds stimulate γ-globin expression in patients with β-hemoglobinopathies

    Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding and non-coding RNAs that is catalysed by the METTL3-METTL14 methyltransferase complex. However, the specific role of these enzymes in cancer is still largely unknown. Here we define a pathway that is specific for METTL3 and is implicated in the maintenance of a leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid leukaemia cells in two distinct genetic screens. Downregulation of METTL3 results in cell cycle arrest, differentiation of leukaemic cells and failure to establish leukaemia in immunodeficient mice. We show that METTL3, independently of METTL14, associates with chromatin and localizes to the transcriptional start sites of active genes. The vast majority of these genes have the CAATT-box binding protein CEBPZ present at the transcriptional start site, and this is required for recruitment of METTL3 to chromatin. Promoter-bound METTL3 induces m6A modification within the coding region of the associated mRNA transcript, and enhances its translation by relieving ribosome stalling. We show that genes regulated by METTL3 in this way are necessary for acute myeloid leukaemia. Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia

    The risks of overlooking the diagnosis of secreting pituitary adenomas

    Full text link

    Nicotinamide nucleotide transhydrogenase as a novel treatment target in adrenocortical carcinoma

    Get PDF
    Adrenocortical carcinoma (ACC) is an aggressive malignancy with poor response to chemotherapy. In this study, we evaluated a potential new treatment target for ACC, focusing on the mitochondrial reduced form of NAD phosphate (NADPH) generator nicotinamide nucleotide transhydrogenase (NNT). NNT has a central role within mitochondrial antioxidant pathways, protecting cells from oxidative stress. Inactivating human NNT mutations result in congenital adrenal insufficiency. We hypothesized that NNT silencing in ACC cells will induce toxic levels of oxidative stress. To explore this, we transiently knocked down NNT in NCI-H295R ACC cells. As predicted, this manipulation increased intracellular levels of oxidative stress; this resulted in a pronounced suppression of cell proliferation and higher apoptotic rates, as well as sensitization of cells to chemically induced oxidative stress. Steroidogenesis was paradoxically stimulated by NNT loss, as demonstrated by mass spectrometry–based steroid profiling. Next, we generated a stable NNT knockdown model in the same cell line to investigate the longer lasting effects of NNT silencing. After long-term culture, cells adapted metabolically to chronic NNT knockdown, restoring their redox balance and resilience to oxidative stress, although their proliferation remained suppressed. This was associated with higher rates of oxygen consumption. The molecular pathways underpinning these responses were explored in detail by RNA sequencing and nontargeted metabolome analysis, revealing major alterations in nucleotide synthesis, protein folding, and polyamine metabolism. This study provides preclinical evidence of the therapeutic merit of antioxidant targeting in ACC as well as illuminating the long-term adaptive response of cells to oxidative stress
    corecore