187 research outputs found

    Recent developments in vascular robotics

    Get PDF

    A Comparison of Accuracy of Image- versus Hardware-based Tracking Technologies in 3D Fusion in Aortic Endografting

    Get PDF
    OBJECTIVES: Fusion of three-dimensional (3D) computed tomography and intraoperative two-dimensional imaging in endovascular surgery relies on manual rigid co-registration of bony landmarks and tracking of hardware to provide a 3D overlay (hardware-based tracking, HWT). An alternative technique (image-based tracking, IMT) uses image recognition to register and place the fusion mask. We present preliminary experience with an agnostic fusion technology that uses IMT, with the aim of comparing the accuracy of overlay for this technology with HWT. METHOD: Data were collected prospectively for 12 patients. All devices were deployed using both IMT and HWT fusion assistance concurrently. Postoperative analysis of both systems was performed by three blinded expert observers, from selected time-points during the procedures, using the displacement of fusion rings, the overlay of vascular markings and the true ostia of renal arteries. The Mean overlay error and the deviation from mean error was derived using image analysis software. Comparison of the mean overlay error was made between IMT and HWT. The validity of the point-picking technique was assessed. RESULTS: IMT was successful in all of the first 12 cases, whereas technical learning curve challenges thwarted HWT in four cases. When independent operators assessed the degree of accuracy of the overlay, the median error for IMT was 3.9 mm (IQR 2.89-6.24, max 9.5) versus 8.64 mm (IQR 6.1-16.8, max 24.5) for HWT (p = .001). Variance per observer was 0.69 mm(2) and 95% limit of agreement ±1.63. CONCLUSION: In this preliminary study, the error of magnitude of displacement from the "true anatomy" during image overlay in IMT was less than for HWT. This confirms that ongoing manual re-registration, as recommended by the manufacturer, should be performed for HWT systems to maintain accuracy. The error in position of the fusion markers for IMT was consistent, thus may be considered predictable

    Introduction of a Team Based Approach to Radiation Dose Reduction in the Enhancement of the Overall Radiation Safety Profile of FEVAR

    Get PDF
    OBJECTIVES: Fenestrated endovascular aneurysm repair (FEVAR) exposes operators and patients to considerable amounts of radiation. Introduction of fusion of three-dimensional (3D) computed tomography (CT) with intraoperative fluoroscopy puts new focus on advanced imaging techniques in the operating environment and has been found to reduce radiation and facilitate faster repair. The aim of this study is to evaluate the radiation dose effect of introducing a team-based approach to complex aortic repair. METHODS: Procedural details for a cohort of 21 patients undergoing FEVAR after fusion-guided (Modern Group) imaging was introduced are compared with 21 patients treated in the immediate 12 months prior to implementation (Historic Group) at a centre with expertise in FEVAR. Non-parametric tests were used to compare procedure time (PT), air kerma, dose-area product (DAP), fluoroscopy time (FT), estimated blood loss (EBL) and pre- and post-operative estimated glomerular filtration rate (eGFR) between the groups. RESULTS: Change in operative approach resulted in a significant reduction in PT for the Modern group (median 285 mins; interquartile range 268–322) compared with the Historic group (450 mins; IQR 360–540 p = <0.001). There were reductions in skin dose for the Modern group (1.6 Gy; IQR 1.09–2.1) compared with the Historic group (4.4 Gy; 3.2–7.05 p = <0.001), and DAP (Modern 159 Gy.cm2; IQR 123–226 vs 264.93 Gy.cm2; 173.3–366.8 for Historic (p = 0.006). There were no significant differences in FT, and pre- and post-operative eGFR between the two groups. Weight and height were distributed equally across both groups. Structured dose reports including the changes in frame rate were not available for analysis. CONCLUSIONS: Implementation of a team-based approach to radiation reduction significantly reduces radiation dose. These findings suggest that the radiation safety awareness that accompanies the introduction of fusion imaging may improve the overall radiation safety profile of FEVAR for patients and providers

    Catheter manipulation analysis for objective performance and technical skills assessment in transcatheter aortic valve implantation

    Get PDF
    Purpose Transcatheter aortic valve implantation (TAVI) demands precise and efficient handling of surgical instruments within the confines of the aortic anatomy. Operational performance and dexterous skills are critical for patient safety, and objective methods are assessed with a number of manipulation features, derived from the kinematic analysis of the catheter/guidewire in fluoroscopy video sequences. Methods A silicon phantom model of a type I aortic arch was used for this study. Twelve endovascular surgeons, divided into two experience groups, experts (n=6) and novices (n=6), performed cannulation of the aorta, representative of valve placement in TAVI. Each participant completed two TAVI experiments, one with conventional catheters and one with the Magellan robotic platform. Video sequences of the fluoroscopic monitor were recorded for procedural processing. A semi-automated tracking software provided the 2D coordinates of the catheter/guidewire tip. In addition, the aorta phantom was segmented in the videos and the shape of the entire catheter was manually annotated in a subset of the available video frames using crowdsourcing. The TAVI procedure was divided into two stages, and various metrics, representative of the catheter’s overall navigation as well as its relative movement to the vessel wall, were developed. Results Experts consistently exhibited lower values of procedure time and dimensionless jerk, and higher average speed and acceleration than novices. Robotic navigation resulted in increased average distance to the vessel wall in both groups, a surrogate measure of safety and reduced risk of embolisation. Discrimination of experience level and types of equipment was achieved with the generated motion features and established clustering algorithms. Conclusions Evaluation of surgical skills is possible through the analysis of the catheter/guidewire motion pattern. The use of robotic endovascular platforms seems to enable more precise and controlled catheter navigation

    Functional Differences in the Backward Shifts of CA1 and CA3 Place Fields in Novel and Familiar Environments

    Get PDF
    Insight into the processing dynamics and other neurophysiological properties of different hippocampal subfields is critically important for understanding hippocampal function. In this study, we compared shifts in the center of mass (COM) of CA3 and CA1 place fields in a familiar and completely novel environment. Place fields in CA1 and CA3 were simultaneously recorded as rats ran along a closed loop track in a familiar room followed by a session in a completely novel room. This process was repeated each day over a 4-day period. CA3 place fields shifted backward (opposite to the direction of motion of the rat) only in novel environments. This backward shift gradually diminished across days, as the novel environment became more familiar with repeated exposures. Conversely, CA1 place fields shifted backward across all days in both familiar and novel environments. Prior studies demonstrated that CA1 place fields on average do not exhibit a backward shift during the first exposure to an environment in which the familiar cues are rearranged into a novel configuration, although CA3 place fields showed a strong backward shift. Under the completely novel conditions of the present study, no dissociation was observed between CA3 and CA1 during the first novel session (although a strong dissociation was observed in the familiar sessions and the later novel sessions). In summary, this is the first study to use simultaneous recordings in CA1 and CA3 to compare place field COM shift and other associated properties in truly novel and familiar environments. This study further demonstrates functional differentiation between CA1 and CA3 as the plasticity of CA1 place fields is affected differently by exposure to a completely novel environment in comparison to an altered, familiar environment, whereas the plasticity of CA3 place fields is affected similarly during both types of environmental novelty

    Working Together May Be Better: Activation of Reward Centers during a Cooperative Maze Task

    Get PDF
    Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis

    A Mismatch-Based Model for Memory Reconsolidation and Extinction in Attractor Networks

    Get PDF
    The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation

    The Golden Beauty: Brain Response to Classical and Renaissance Sculptures

    Get PDF
    Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naïve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas). The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naïve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty); the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty)

    Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain.</p> <p>Results</p> <p>Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes <it>homer1a</it>, <it>arc</it>, <it>zif268</it>, <it>ngfi-b </it>and c-<it>fos </it>in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues.</p> <p>Conclusion</p> <p>The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.</p
    • …
    corecore