20 research outputs found

    Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material

    Get PDF
    The size and operating energy of a nonlinear optical device are fundamentally constrained by the weakness of the nonlinear optical response of common materials1. Here, we report that a 50-nm-thick optical metasurface made of optical dipole antennas coupled to an epsilon-near-zero material exhibits a broadband (∼400 nm bandwidth) and ultrafast (recovery time less than 1 ps) intensity-dependent refractive index n2 as large as −3.73 ± 0.56 cm2 GW−1. Furthermore, the metasurface exhibits a maximum optically induced refractive index change of ±2.5 over a spectral range of ∼200 nm. The inclusion of low-Q nanoantennas on an epsilon-near-zero thin film not only allows the design of a metasurface with an unprecedentedly large nonlinear optical response, but also offers the flexibility to tailor the sign of the response. Our technique removes a longstanding obstacle in nonlinear optics: the lack of materials with an ultrafast nonlinear contribution to refractive index on the order of unity. It consequently offers the possibility to design low-power nonlinear nano-optical devices with orders-of-magnitude smaller footprints.PostprintPeer reviewe

    Ultrafast control of third-order optical nonlinearities in fishnet metamaterials

    No full text
    Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ((3)) was observed; the all-optical χ((3)) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm(2)
    corecore