11 research outputs found

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Population dynamics of Thaumastocoris peregrinus in Eucalyptus plantations of South Africa

    Get PDF
    Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents

    Population Development of the Invasive Species Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) on four Eucalyptus Species of the Subgenus Symphyomyrtus

    No full text
    Thaumastocoris peregrinus Carpintero & Dellapé (Hemiptera:Thaumastocoridae) is a small sap-sucking insect that feeds on Eucalyptus L?Hér. leaves. Although it is native to Australia, it currently has a global distribution and it is considered as one of the big five pests of eucalypts around the world. We described the development of T. peregrinus population on four Eucalyptus species under the environmental conditions in Argentina. We also analyzed the use of yellow sticky traps as a monitoring method for this pest. The four Eucalyptus species were suitable for T. peregrinus. A cyclic pattern was observed in the development of the bronze bug population with an annual seasonal peak followed by a decrease in the abundance, reaching a minimum value during the unfavorable seasons. During the fall and winter seasons, epizootic events were registered in all the Eucalyptus species, caused by an entomopathogenic fungus. None of the meteorological variables had a clear influence neither on the bronze bug population nor with the occurrence of fungal infection. We found a significant relationship between the number of nymphs and adults of T. peregrinusin branches and the number of individuals caught in traps, suggesting that traps give actual information about the bronze bug abundance in the tree canopy.Fil: Cuello, Eliana Marina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Andorno, Andrea Verónica. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; ArgentinaFil: Hernández Guzmán, Claudia Marcela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; ArgentinaFil: López, Silvia Noemí. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore