60 research outputs found

    Chaos in the Gauge/Gravity Correspondence

    Full text link
    We study the motion of a string in the background of the Schwarzschild black hole in AdS_5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.Comment: 29 pages, 11 figure

    Ballistic nanofriction

    Full text link
    Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS) and nanomotors, increasingly involve large speeds, and rotations as well as translations of the moving surfaces; yet, the physics of high speed nanoscale friction is so far unexplored. Here, by simulating the motion of drifting and of kicked Au clusters on graphite - a workhorse system of experimental relevance -- we demonstrate and characterize a novel "ballistic" friction regime at high speed, separate from drift at low speed. The temperature dependence of the cluster slip distance and time, measuring friction, is opposite in these two regimes, consistent with theory. Crucial to both regimes is the interplay of rotations and translations, shown to be correlated in slow drift but anticorrelated in fast sliding. Despite these differences, we find the velocity dependence of ballistic friction to be, like drift, viscous

    Sediment Resuspension Due to Near-Bed Turbulent Effects: A Deep Sea Case Study on the Northwest Continental Slope of Western Australia

    Get PDF
    Sediment transport equations often consider a mean velocity threshold for the initiation of sediment motion and resuspension, ignoring event‐based turbulent bursting processes. However, laboratory experiments have suggested that near‐bed sediment resuspension is influenced by intermittent turbulent coherent structures. In the field, accessibility constraints for deployment of easily operated equipment has largely prevented further identification and understanding of such processes, which may contribute to resuspension in the marine environment. Field experiments were conducted on the Northwest Slope, Australia, under conditions where the mean current velocities were below the estimated and measured time‐averaged critical velocity to investigate the relationship between near‐bed turbulent coherent structures and sediment resuspension. Results indicate that sediment resuspension occur even when velocities are below the estimated and measured mean critical values. The majority of turbulent sediment flux is due to ejection and sweep events, with lesser contributions from up‐acceleration and down‐deceleration (vertical flow) events. Spectral and quadrant analysis indicated the anisotropic and intermittent nature of Reynolds stresses, and wavelet transform revealed a group of turbulent bursting sequences associated with sediment resuspension. These observations, in flow conditions where resuspension was not expected to occur based on mean threshold concepts, reveal that intermittent turbulent events control sediment resuspension rather a single time‐averaged critical velocity. This highlights the need of considering turbulence as a significant factor in sediment resuspension and should be further investigated for inclusion into future sediment transport modeling

    Necessary Optimality Conditions for Scheduling Problems

    No full text

    Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction

    No full text
    The response of mean turbulent energy dissipation rate and spectra to concentrated suction applied through a porous wall strip has been quantified. Both suction and no suction data of the spectra collapsed reasonably well for Kolmogorov normalised wavenumber k₁* > 0.2. Similar results were also observed for second-order structure functions (not shown) for Kolmogorov normalised radius r* < 10. Although, the quality of collapsed is poorer for transverse component, the result highlights that Kolmogorov similarity hypothesis is reasonably well satisfied. However, the suction results shows a significant departure from the no suction case of the Kolmogorov normalised spectra and second-order structure functions for k₁* < 0.2 and r* > 20, respectively. The departure at the larger scales with collapse at the small scales suggests that suction induce a change in the small-scale motion. This is also reflected in the alteration of mean turbulent energy dissipation rate and Taylor microscale Reynolds number. This change is a result of the weakening of the large-scale structures. The effect is increased as the suction rate is increased
    • 

    corecore