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Abstract Sediment transport equations often consider a mean velocity threshold for the initiation of
sediment motion and resuspension, ignoring event-based turbulent bursting processes. However,
laboratory experiments have suggested that near-bed sediment resuspension is influenced by intermittent
turbulent coherent structures. In the field, accessibility constraints for deployment of easily operated
equipment has largely prevented further identification and understanding of such processes, which may
contribute to resuspension in the marine environment. Field experiments were conducted on the Northwest
Slope, Australia, under conditions where the mean current velocities were below the estimated and
measured time-averaged critical velocity to investigate the relationship between near-bed turbulent
coherent structures and sediment resuspension. Results indicate that sediment resuspension occur even
when velocities are below the estimated and measured mean critical values. The majority of turbulent
sediment flux is due to ejection and sweep events, with lesser contributions from up-acceleration and
down-deceleration (vertical flow) events. Spectral and quadrant analysis indicated the anisotropic and
intermittent nature of Reynolds stresses, and wavelet transform revealed a group of turbulent bursting
sequences associated with sediment resuspension. These observations, in flow conditions where
resuspension was not expected to occur based on mean threshold concepts, reveal that intermittent
turbulent events control sediment resuspension rather a single time-averaged critical velocity. This highlights
the need of considering turbulence as a significant factor in sediment resuspension and should be further
investigated for inclusion into future sediment transport modeling.

Plain Language Summary In this paper, investigation from deep-water (~375 m) field
measurements were carried out, showing that in deep water conditions, fluid turbulent bursting
phenomena plays a significant role in resuspending sediment, even for low-flow conditions under which
transport equations (based on a time-averaged critical velocity) predict no transport. The finding of this study
allows us advance the understanding of the near-bed sediment resuspension process for developing
improved sediment transport equations and models in the future.

1. Introduction

1.1. The Role of Turbulence on Sediment Transport

Accurate knowledge of sediment transport mechanisms is crucial for a variety of problems ranging from river
and coastal engineering to environmental science (Buffington, 1999; Kondolf et al,, 2014; Mei et al,, 1997;
Robinson et al., 2005; Thompson et al., 2013; Wolanski et al., 2003). Despite extensive research in this field,
including a large number of experimental studies (as detailed in Dey, 2011), the ability to estimate sediment
transport is still hindered by a lack of understanding of all the physical processes contributing to sediment
entrainment and resuspension (Aagaard & Jensen, 2013; Dwivedi et al, 2012). In this study, the term
resuspension is used for particles initially on the seabed, which are eventually lifted into the water column,
in contrast to particles permanently in suspension (i.e., washload). On the other hand, entrainment is used
as the conditions just adequate to initiate sediment mobilization.

Most previous engineering and sedimentological applications have related sediment resuspension to a
time-averaged bed shear stress. This concept suggests that sediment erodes and becomes resuspended
when the bed shear stress exceeds a critical value (e.g, Shields, 1936). On the other hand, since the early
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1950s, researchers attempted to characterize sediment entrainment advocating that it depended solely on
fluid lifting force, with near-bed sediment being entrained due to instantaneous near-bed vertical velocity
(Einstein, 1950; Ling, 1995; Velikanov, 1955). They reasoned that the sediment particles on the bed surface
experience the maximum velocity gradient, and thus, a lift acts on the particles due to the pressure differ-
ence. Furthermore, they also conceptualized that the sediment particles may experience lift due to the
instantaneous vertical velocity fluctuations in the vicinity of the bed and that the spinning motion of sedi-
ment particles may result in lift due to Magnus effect (Dey, 1999). Once the lift equals the submerged weight
of the particle, a smaller force is necessary to entrain the bed particles. Other approach, as Wu and Chou
(2003), studied the rolling and lifting probabilities for sediment entrainment, introducing the probabilistic
features of the turbulent fluctuations and particle shape. Such probabilities were thus linked to threshold
entrainment probabilities.

Kline et al. (1967) discovered a cyclical, nonperiodic process in fluids, a turbulent bursting, where the wall layer
spreads slowly over a large period of time and then interacts strongly with the outer layer flow in an event-
like manner. Bursting events involve a horseshoe or hairpin vortex, traveling centrifugally ejecting low-speed
fluid away from the bed, experiencing a partial breakdown into turbulence (‘ejection’). High-speed fluid can
also move toward the bed (sweep). The vortex has transverse dimensions similar to the associated boundary
layer streaks and keeps these general dimensions all over its lifespan (Allen, 1985; Wu & Shih, 2012). This dis-
covery of the bursting phenomenon provided a new perspective to explore resuspension processes in
turbulent flows.

Several laboratory studies established relationships between coherent motions within the turbulent bound-
ary layer and sediment resuspension (Grass, 1974; Sumer & Deigaard, 1981; Sumer & Oguz, 1978; Sutherland,
1967). In a laboratory alluvial streambed, Sutherland (1967) noticed that sediment entrainment was result of
the impact of a near-bed eddy onto the bed, producing a streamwise force able to mobilize the sediments.
Grass (1974) investigated resuspension due to turbulent flow in strictly flat sand bed conditions, associating
the ejection of fluid away from the boundary with the sediment response. Ejections conveyed a greater
upward momentum flux of the particles than the downward flux and so were capable to resuspend particles
denser than the fluid. Further laboratory studies using photographic techniques, Sumer and Oguz (1978), and
Sumer and Deigaard (1981) detected that the uplifting of sediment particles was strongly controlled by ejec-
tions, and the process continued until the accompanying coherent structure breaks up, at which point par-
ticles begin to fall. While falling, a particle occasionally interacted with newly ejected fluid streaks due to
other bursts, resulting in the particle rising again. These mechanisms kept occurring, continuously lifting par-
ticles into suspension. Falco (1991) experimentally noticed multiscale turbulent eddies in the inner-outer wall
region and developed a coherent motion model. Focusing on a flat plate zero pressure gradient boundary
layer, their study revealed that a particular set of coherent structures in the turbulent boundary layer were
dynamically important for sediment motion. More recent experiments (Cellino & Lemmin, 2004; Kaftori
et al., 1995; Mao, 2003; Nelson et al, 1995; Nifio & Garcia, 1996; Salim et al, 2017) highlight the importance
of turbulent bursting in laboratory conditions relating the ejections to sediment entrainment into the water
column and sweep effectively transporting bedload (Cao, 1997; Dyer & Soulsby, 1988; Heathershaw, 1979;
Keylock, 2007; Soulsby, 1983; Yuan et al.,, 2009).

Heathershaw and Thorne (1985) investigated the role of turbulent structures on sediment entrainment.
Conducting experiments in tidal channels, they argued that entrainment was not correlated with the instan-
taneous Reynolds shear stress but with the near-wall instantaneous streamwise velocity. However, observa-
tions by Drake et al. (1988) on mobility of gravels in alluvial streams suggested that the majority of gravel
entrainment was associated with sweep events giving rise to the motion of particles. These events occurred
episodically during a small fraction of the time at any particular location on the bed. Thorne et al. (1989)
observed that only sweeps and outward interactions played a significant role in the transport of coarse sedi-
mentary material. It was the instantaneous increase in streamwise velocity fluctuations that generated excess
boundary shear stresses in order to drive the transport process. In a microtidal saltmarsh channel, French and
Clifford (1992) noticed that on average around 90% of the total intermittent Reynolds shear stress contribu-
ted to resuspend sediments for 50% of the total sampling time. Soulsby et al. (1994) demonstrated a signifi-
cant link between the bursting process and the suspension of sediment within boundary layers. They made
simultaneous measurements of the high-frequency fluctuations of sand concentration, resuspended in a tidal
current, and the horizontal and vertical components of the water velocity above a sandy bed of an estuary.
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They showed that large upward fluxes of sediment were associated with ejection events. Field experiments
by Couturier et al. (2000) showed that the macroscale flow modules intensified the ejection-like turbulent
events and sediment resuspension. Ejection events were associated with decreasing horizontal velocity
and increasing turbidity, while sweep events were present during increasing horizontal velocity and decreas-
ing sediment concentration. Yuan et al. (2009) conducted field experiments in the western Yellow Sea of
China and suggested that the majority of turbulent sediment flux was the result of ejections and sweeps,
while contributions from up-acceleration and down-deceleration events were significantly less.

Time-averaged bed shear stress threshold concepts for initiation of motion have long played a central role in
sediment transport theory (e.g., since Shields, 1936). However, several investigations (e.g.,, Cellino & Lemmin,
2004; Mao, 2003; Nifio & Garcia, 1996; Salim et al., 2017) reconsidered this concept and suggested that the
turbulent bursting-based sediment entrainment has a major influence on sediment resuspension. For
instance, Grass (1971) and Lavelle and Mofjeld (1987) concluded that based on empirical evidence, even at
very low values of mean bed shear stress, turbulent fluctuations in instantaneous bottom shear stress as well
as the random exposure of bed grains to the flow made it possible for particles to move. To our knowledge,
limited field studies have been reported in this regard where mean flow speeds were below the time-
averaged critical velocity. In one such investigation, O'Callaghan et al. (2010) examined the physical mechan-
isms underpinning sediment resuspension in the Swan River estuary, Western Australia, where mean currents
were lower than critical levels but yet showed large turbidity events during intertidal oscillations. Similarly,
experimental evidence conducted by Yang et al. (2016) in the shallow marine environment of southern
Yellow Sea, China, suggested that the resuspension of sediment was related to intermittent turbulent events,
where mean current velocity is lower than the predicted by existing threshold models.

1.2. Validation of Turbulent Bursting in the Deeper Ocean

Although field observations of turbulent coherent structures have been conducted regularly, field
experiments with below-critical velocity conditions are relatively scarce (e.g, O'Callaghan et al.,, 2010;
Yang et al., 2016; as mentioned above). To the best of our knowledge, no in situ observational studies in
deep water conditions of the continental slope region has been performed to investigate the impact of
bursting on below-critical flow fields, due to the lack of accessibility to the sites and availability of robust,
easily operated deep water field equipment to measure turbulent velocity, and acoustic backscatter (as a
surrogate measure of suspended sediment concentration [SSC]) simultaneously close to the seabed to
estimate sediment resuspension. In the deep ocean systems (i.e, continental slope and continental shelf
regions), engineers need to incorporate the influence of seabed mobility into the design of large scale
marine infrastructure (e.g., platforms [rigs], subsea pipelines, jackets, and associated constructions such as
subsea-mattresses and wellheads). However, consideration of the effect of near-bed turbulent coherent
structures on sediment mobility (i.e., sediment entrainment and resuspension leading to erosion and scour)
in the stability analysis of marine engineering structures are still elusive. The fluvial investigation conducted
by Izadinia et al. (2013) on the stochastic nature of instantaneous shear stresses over the scour hole of
hydraulic structures (in this case bridge piers) reported that the turbulent sweep events at the upstream side
caused of maximum scour depth and led transportation of sediments to the downstream side. This further
clarifies that the consideration of such commonly used transport models, which are based on time-averaged
approaches, can increase the risk of insatiability of hydraulic structures. Furthermore, Leckie et al. (2016)
suggested that in deep water systems (similar deployment locations as investigated in this paper), transport
of sediment related to the subsea pipelines causes changes in benthic habitat conditions. Therefore,
investigating turbulent bursting-based sediment transport process has significance for the better
understanding of deep sea aquatic life.

All issues above are good reasons to explore the deep water systems of the continental slope and to
investigate the influence of turbulent bursting on sediment transport. The aim of this paper is to describe
the temporal and spatial relationships between the near-bed turbulent coherence structures and sediment
resuspension in the continental slope region, in particular when mean velocities are below the estimated
and measured mean critical velocities. In this study, the term measured mean critical velocity refers to a mean
value determined by finding the velocity at which the recorded SSC was higher than the background level, as
detailed in section 2.2 below. In situ observational study presented herein, at the southern end of the
Australian Northwest Shelf provide a unique perspective to further understand the interactions between
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Latitude (Deg.N)
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Figure 1. Bathymetric map of the Northwest Shelf showing the study site
(red dot), located 53 km north-northwest of Exmouth in Van Gogh (—21°

sediment resuspension and turbulent characteristics on deep water condi-
tions where measured and estimated (considering widely used transport
equations) mean critical velocities are rarely exceeded.

The NW shelf region experiences strong semidiurnal tides (Holloway, 1983)
with the tidal motion dominated by the principal lunar (M;) and principal
solar (S;) constituents (Holloway, 1983). Spring tides can produce a range
of over 6 m (Holloway, 1983), and these tides are the main forcing of cur-
rents in the bottom boundary layer on the continental shelf and slope
(Katsumata, 2006) suggesting changes in current direction twice a day,
consisting four slack tides per day. The bottom boundary layer currents

Western Australia

114

116 118 120 speeds were up to 0.2 m/s (Holloway & Nye, 1985). The background

Longitude (Deg.E) ocean currents were also observed along the shelf where the main cur-

rent ran counter to the anticlockwise flowing Eastern Boundary Current
and flowed strongest away from the equator down the west coast of

23'51.63'N, 114° 04/04.89°F). contour lines represent water depth in meters. Western Australia during February-June. This unusual current is known

as the Leeuwin Current and has maximum speed of approximately
025 m/s over the shelf break (Holloway & Nye, 1985). However, its influence on the bottom velocity cur-
rents is negligible compared to the tidal currents and internal currents as the Leeuwin Current weakens in
association with persistently equatorward winds between September and January when the data pre-
sented in this paper was collected (Meuleners et al., 2007). The other influence on the shelf currents is
internal waves (Antenucci & Ivey, 2006; Grant & Madsen, 1986; Nikora et al.,, 2002). Antenucci and Ivey
(2006) found that large, local increases in energy levels gave peak speeds varying from 0.59 to 1.87 m/
s for events lasting between 8 and 24 hr on the North West Cape in 302 m of water. These waves can
cause the velocities to go beyond the threshold value for sediment resuspension but also cause turbu-
lence, which can encourage the bursting phenomenon. Boegman and Ivey (2009) have shown that resus-
pension of sediment from shoaling internal waves was directly attributed to the near-bed viscous stress
and near-bed patches of elevated positive Reynolds stress generated by the vertical structures. They also
found that elevated near-bed viscous stresses were found throughout the domain at locations that were
not correlated to the resuspension events, and that while these stresses were required for the sediment
motion, it was not necessarily a precursor for resuspension (Boegman & Ivey, 2009), much like the results
found for bursting (Robinson, 1991; Soulsby, 1983).

2. Study Area, Materials, and Methods

2.1. Site Description, Conditions, and Instrumentation

This study was an industry-based project, in collaboration with Apache Energy, an oil and gas company, using
their remotely operated vehicles (ROVs) to deploy acoustic instrumentation on the seafloor. Data were col-
lected from the southern end of the Northwest Shelf along the continental slope in 375-m water depth.
The bathymetry at the site was gently sloping as the continental slope was quite wide in this location, and
it was still in the transition stage, with only a small degree of slope. The instrument was deployed from a dril-
ling rig located in the Van Gogh oil field (Figure 1) using a subsea ROV with real-time cameras and multifunc-
tional arms (Figure 2).

A sediment core was taken during the deployment adjacent to the site location. Sieve analysis determined a
mean particle size diameter dgq = 0.1 mm, sediment sorting coefficient S, = 1.70, coefficient of gradation
C, = 1.3, and uniformity coefficient C, = 6. Near the Van Gogh site, sediment samples were dominated by cal-
cium carbonate (CaCOs3) deposited along a consistently flat terrain (AE, 2008; BHPB, 2012). These sediment
classifications were consistent with previous investigations by Harris and Baker (1988). The drawback of tak-
ing measurements around the drilling rig was the presence of drill spoils, which came from drilling of the well,
and the deployed instrument might have measured these drilling spoils as the sediment concentration.
Therefore, the deployment location was carefully selected considering a more open area that had less spoils
so that it did not affect the results of the typical sediment movement of the area.

Data were collected continuously for a 23-hr period starting at 15:00 on 26 September 2008, for a semidiurnal
tidal cycle using a Nortek acoustic Doppler velocimeter (ADV) with titanium housing, rated to a depth of
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Figure 2. Real-time camera view showing the instrumental setup while remotely operated vehicle (ROV) extracting the
instrument from the sea-floor (for better interpretation of “ROV extracting the instrument,” interested readers can watch
the video attached with the online version of this article).

3,000 m and a flexible head with a 2-m-long cable. The ADV was mounted looking downward to record the
instantaneous velocities in ENU (East, North, Upwards) coordinates, posteriorly used to extract mean and
turbulent velocity statistics, as well as synchronous backscatter eco intensity, used as a proxy for SSC, at a
sampling rate of 8 Hz. The sampling volume of the ADV was located at 0.303 m above the seabed. The
height was consistent throughout all measurements, as the recorded low currents did not change the
dynamics of the visually observed flat bed, with no presence of bedforms nearby. Spectral frequency
analysis found relevant frequencies in the system, yielding peaks in sediment suspension concentrations at
corresponding peaks in the recorded velocities. Tidal prediction for the area was corroborated with
temperature measurements taken by the ADV, as colder water from further down the continental slope,
and warmer water from the coast are brought by tidal changes. These patterns were accompanied by
strong temperature fluctuations indicating the interactions between tides and local currents.

2.2, Calculation of the Estimated and Measured Mean Threshold Velocity

The velocity threshold for initiation of motion at the deployment location (Van Gogh) was estimated using
mean grain diameter (dsq) of 0.1 mm, a grain density (ps) for Calcite (CaCOs) of 2,710 k{_:p,r‘m3 (Allen, 1985),
and seawater density of 1,025 kg/m?, using von Karman constant as 0.41 and obtaining Nikuradse’s rough-

ness z, with
ks —u,k; v
z"_ﬁ(‘_e"p[ 270 jl)+9u,, M

with ks = 2.5ds, u-is the fluid friction velocity, and v is the kinematic viscosity of water.

Based on widely used theoretical transport models such as Shields (1936), van Rijn (1984), Soulsby (1997), and
Soulsby and Whitehouse (1997), the critical velocities for initiation of motion ranged between 0281 and
0.679 m/s (Table 1). On the other hand, the measured mean critical velocity was determined in the field by
tracking the changes in SSC and hydrodynamic conditions (Andersen et al, 2007; Shi et al., 2015), identifying
the mean longitudinal (u) tidal velocity (i.e., main direction of the flow), turbulent kinetic energy (TKE) shear
stress, and backscatter readings where sediment resuspension was just initiated. The measured critical
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Table 1

Theoretical Mean Critical Values for Sediment Entrainment at z = 0.303 m Compared in This Study

Criteria

Estimated
Equations Uer (m/s)

Shields (1936)

van Rijn (1984)

Soulsby (1997)

0302
M- = & In z
a k Zp

u, = /[Br(s — 1)gdso)
B¢r from Shields diagram
Rp = @

where s is specific gravity and us is fluid friction velocity.
0.520

4D
T = 0.19d%; log,q (a); 100 < dsp < 500 um

4D
Tg = 8.5d%¢ Iogm(a); 500 < dsp < 2,000 pm

where D is water depth and dsg and dgg are the corresponding percentiles on the granulometric curve.
0.679

17
Uy = 7(%) [g(s — 1)dsof(D.)]'/?

s—= b — density of the sediment
— p  density the flui
1/3

D, = [9_(1_;_11] dsp

f(D.) =723~ +0.055(1 — e~%9200*) for values of D« > 0.1.

where D« is the dimensionless particle diameter

Soulsby and Whitehouse (Soulsby, 1997) 0.281

__U.I z
ua_k n 7

" — (%)1;2
Ter = 8erglps — pldso

Ocr = % + {],055(1 - 8—0.0209.)

velocity used in this paper represents a time-averaged value where the threshold was considered when ADV
started recording the mean concentration higher than the mean background. The measured mean critical
velocity is thus taken as the shift between the mean concentration from a baseline value to a clearly
increased value.

2.3. Data Analysis

A set of 20 sections, 2-min long each, were analyzed in detail. Analysis focused on data with mean current
velocity lower than the estimated and measured mean critical velocities. Prior to analysis, the data were
split in 2-min segments, as is often done in this type of study to simplify the trends for visualization with-
out losing any patterns (Kularatne & Pattiaratchi, 2008; Soulsby et al,, 1994; Yang et al, 2016). Herein we
present a detailed analysis of two such 2-min time series, between 91 to 93 min (TS-1), and 144 to
146 min (TS-2), as showed in Figure 3. Those two segments show the same patterns found throughout
the whole time series (throughout the 20, 2-min series analyzed). An axis rotation algorithm based on prin-
ciple component analysis was used along horizontal coordinates to transform the East (u velocity) compo-
nent as the main direction of the flow for each section of the data (Emery & Thomson, 2001; Westra
et al,, 2010).

SALIM ET AL.
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Figure 3. Time series between 40 and 800 min identifying events at (i), (ii), and (iii): (a) 1-min mean absolute u-directional
velocity, (b) TKE bed shear stress, and (c) backscatter reading near the bed. The horizontal dashed line (green in color)
showed the threshold resuspension velocity, and the vertical dashed lines (purple in color) showed the relevant seabed
resuspension occurrence. Time Series-1 (TS-1) and Time Series-2 (TS-2) between 91 to 93 min and 144 to 146 min,
respectively, are the segments (two- min long each) presented in this paper for detailed analysis.

2.3.1. Spectral Analysis
Spectral analysis (Figure 4) was conducted based on spectral energy cascade theory (Kolmogorov, 1941) for
the three-dimensional inertial subrange spectrum:

E(k) = Cee¥? k53, 2

where E(k) is the energy spectrum based on the wave number; C; is the Kolmogorov constant, deduced from
experimental data (due to considerable uncertainty which lies between 1.4 and 2.2 as stated in Shalaby,
2007); £ is the rate of dissipation of energy; and k is the wave number (Baumert et al., 2005).

2.3.2. Reynolds Decomposition

Reynolds decomposition was used to determine the turbulent characteristics (Emery & Thomson, 2001;
French & Clifford, 1992; Kularatne & Pattiaratchi, 2008):

u=tu+uv,v=v+v w=w+w, (3)

where v, v, and w are the measured velocity components, primes denote instantaneous fluctuations, and
overbars represent time averages. This decomposition allows calculation of the kinetic energy associated
with turbulence, Reynolds shear stress, and inertial dissipation, as well as the assessment of the bursting phe-
nomena. Due to the difficulty in identifying clear trends with the time series sampled at 8 Hz, we used a 1-s
mean to facilitate analysis and identification without losing resolution. We estimated the turbulent integral
time scale, as well as the Kolmogorov time scale of the time series presented in this paper, in order to ensure
that sufficiently high temporal resolution was used for the investigation. For instance, for TS-1, integration of
the autocorrelation function up to the first zero crossing (at t = 0.375 s) yielded a turbulent integral time scale
of 0.09 s. On the other hand, considering the maximum velocity magnitude (umax = 0.089 m/s) of the TS-1, we
have estimated the Kolmogorov time scale based on the assumption that the dissipation rate is equal to the
kinetic energy production rate at which kinetic energy supplied to the small scales (i.e., dissipation = (Umax)*/
L, where L is the integral length scale, estimated as the product of the calculated integral time scale and a
representative maximum velocity, umay). Thus, we calculated the Kolmogorov time scale as 0.003 s, which
is much lesser than the temporal resolution (i.e,, 0.125 » 0.003 s) of the data presented in this study. We also
found the Kolmogorov time scale as 0.007 s considering as representative velocity the mean value (i.e,, dis-
sipation = (Umean) 3/L, where Umean is a representative mean velocity magnitude), which is much lesser than
the temporal resolution (i.e,, 0.125 s » 0.007 s) too. Similar time scales were found for TS-2. When compared
to the turbulent integral time scale, our temporal resolution, 1/8 s, suggests that although we are not able to
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10" ' ' resolve the fastest eddies from the recorded data due to the instrument
@) limitations and deployment constrains in the deep water systems, our data
10° | E resolution was able to capture most events, yielding adequate high tem-
poral resolution for turbulence analysis.
10° L 4 2.3.3. Bed Shear Estimation

E(k) (m’/s%)
=

Single-point measurements of turbulent velocity fluctuations using ADV
were used to calculate Reynolds shear stress (McLelland & Nicholas,
2000) widely used in previous field investigations (Couturier et al., 2000;
Heathershaw, 1979; Kularatne & Pattiaratchi, 2008; Soulsby, 1983; Yuan
et al.,, 2009). Stress values were estimated by

3 TRe = —p(u!w!), (4

: where 1g. is the Reynolds shear stress and p is the fluid density. Since, no

quantitative analysis of Reynolds stress was undertaken, the term v'w
represented turbulent Reynolds stress in this paper. Voulgaris and

Trowbridge (1998) noticed that the ADV sensors can measure nearby
Reynolds stress within 1% of the estimated true value. Kim et al. (2000)
compared four different methods of bed shear stress estimations in the
field at 0440 m above the bed. They concluded that ADV sensors should
be close enough to the bed but sufficiently far to avoid problems asso-
ciated with velocity shear within the sampling volume. In line with other
previous experiments in field conditions (e.g., Yuan et al., 2009, and Yang
et al, 2016, who measured bottom stress at 0.450 and 0.500 m above
the bed respectively), we determined measuring at 0.303 m above the
bed as the optimum sensor height after several trials in order to avoid
orientation problems and weak spot problem that caused interference
and rendered the data to be unusable. Later in data analyzing stage, since
the principle component analysis was used along horizontal coordinates
' to transform the East (u velocity) component as the main direction of

10

Wavenumber (m™)

10 10 the flow minimizing the transverse velocity (v velocity). Therefore, the vw'
component was ignored in this study due to smaller values.

Figure 4. Wavenumber spectra of the velocity components between (a) 91~ The TKE method, widely applied in oceanographic research (e.g. Biron

93 min (TS-1) and (b) 144-146 min (TS-2), where blue is the East component
(u), magenta is the North component (v), and green is the vertical compo-
nent (w). The solid line shows the —5/3 gradient of the energy dissipation

equation.

et al.,, 2004), was used in calculating near-bed shear stress as
TKE:o.sp(FJrFJrF) 5)

Since, no quantitative analysis of TKE stress was undertaken, the term p was ignored in this study.

As the ratio of TKE to the shear stress is constant, the measurement of shear stress was also used to estimate
TKE-shear stress using the following equation (Pope et al,, 2006):

ke = 0.19TKE (6]

where 1rie is the TKE shear stress (Figure 5). Since the water density was considered constant in this study,
therefore, the density of water was not presented for simplification.

2.3.4. Near-Bed Sediment Concentration Measurements

The ADV also records the reflection of the acoustic signal from particulate matter in water. Earlier studies (e.g.,
Fugate & Friedrichs, 2002; Voulgaris & Meyers, 2004) reported a simple logarithmic relationship between
near-bed sediment concentration and backscatter index (derived as 10.log10[SS(]), however, in this investi-
gation it was not practical to collect near-bed water samples due to large water depth (375 m) and difficulty
of collecting near-bed water sample due to the limitation of instrumental facility. Particle size of the sus-
pended sediment at the deployment location, dsq = 0.1 mm, falls within the detectable range of our ADV
to use backscatter as a proxy for SSC (as discussed in Lohrmann, 2001). Given the below-critical conditions
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Figure 5. Comparison of the one-second mean Reynolds and turbulent
kinetic energy (TKE) shear stresses within the selected two time series
between (a) 91-93 min (T5-1) and (b) 144-146 min (TS-2). The solid black line

defines the equality.
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2.3.6. Wavelet Analysis

analyzed in this study, the SSC at the sampling location is not high enough
to saturate the signal, allowing the use of recorded backscatter as proxy for
SSC within the measured range. The following equation (Lohrmann, 2001)
was used for the suspended particulate matter calculation:

EL = 0.43 Amp + 2010g10 (R) + 2 au R+ 20R((apdr), @)

where EL is the echo level in dB, Amp is the amplitude in counts recorded
by the ADV, R=0.157 is the range or distance between the transducer and
focal point in meter, a,, = 0.7 is the water absorption in dB/m (when sali-
nity = 35 ppt for 1.5 MHz frequency, chosen from the list of values pro-
vided in Lohrmann, 2001), and «,, is the particle attenuation in dB/m.
Lohrmann (2001) suggested that the particle attenuation becomes very
small at low concentrations; therefore, the fourth term (i.e, 20RI[apdr]]
was ignored. Ejection and sweep events were identified using echo level
(EL), considering the higher backscatter amplitudes produced by higher
SSC. A concentration proxy (c') was also used as an indicator to identify
variations in concentration of sediment, which was analyzed using
Reynolds decomposition as discussed in Salim et al. (2017).

2.3.5. Quadrant Analysis

Quadrant analysis classifies different turbulent events and examines their
intermittent nature and contribution to Reynolds stress. Kline et al.
(1967) suggested the division of different burst motion events into uv'-w/
quadrants so that each event could be characterized and better under-
stood based on their associated velocity fluctuations and their positions
within the quadrant. It has become common to use quadrant analysis for
studying intermittent turbulent structures and their contribution to sedi-
ment transport (e.g., Kularatne & Pattiaratchi, 2008; Yuan et al, 2009).
Therefore, the statistics of velocity fluctuations (u’ and w’') were plotted
in this study into quadrants on a u’-w plane to study their significance
(Liu et al, 2016; Lu & Willmarth, 1973). Such approach allowed us to iden-
tify the frequency of occurrence of each individual event within a bursting
process as ejection (U’ < 0, w > 0), sweep (U’ > 0, W < 0), up-acceleration
(v’ > 0, w > 0),and down-deceleration (v’ < 0, w < 0) (lzadinia etal,, 2013;
Kwoll et al,, 2016). Recent work of Keylock et al. (2014) considered extend-
ing quadrant analysis into three dimensional octant analysis in order to
characterize dominant flow structures, allowing linking to the sediment
entrainment from the bed and into suspension, and the frequencies to
dominate the velocity spectra contributing the majority of the total shear
stress. However, u’-w' plane (a widely used two-dimensional quadrant
approach) was chosen for this paper due to the simplicity of its implemen-
tation in exploring aspects of turbulent flow physics that otherwise have
remained unidentified (Salim et al., 2017).

Wavelet analysis estimates the nonstationary power at many different frequencies of a time series
(Daubechies, 1990). To reveal the dynamics of coherent structures and measure their contribution to the
energy spectrum, continuous wavelet transform (CWT) was employed to derive the time evolution of
momentum and sediment flux of turbulent coherent structures near the bottom boundary layer as described
by Grinsted et al. (2004). Wavelet coherence (WTC) was also applied to expose regions with high common
power showing phase relationships between the CWT of momentum and sediment flux. As the wavelet
was not completely localized in time, the CWT and WTC edge artifacts were delimited in the power spectra
by a cone of influence (COI). Therefore, results within the COl were avoided and visualized in the power spec-
tra as a lighter shade. Further details of the applied algorithm and theory can be found in Grinsted

et al. (2004).
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3. Results

3.1. Tide and Temperature

In this study the history of tropical cyclones passing in the vicinity of the deployment location was reviewed
and no storms of sufficient strength to create sediment mobility were noted. Tidal currents and solitons are,
however, known to create strong water movements through this area (Baker et al., 2008). The tidal prediction
for the area was compared to the temperature recorded by the ADV, which was used as a rough indication of
the movement of water bodies. The temperature time series did not indicate the presence of internal waves
during the measurement period.

3.2. Measurement of In-Situ Mean Critical Velocity

We identified the measured mean critical value using the records of backscatter and tidally induced mean
velocity in the u direction. The near-bed backscatter showed significant increases (i.e,, large spikes) in
response to higher mean velocities on several occasions over shorts periods of time (events i, ii, and iii in
Figure 3). The data indicated that the backscatter intensity, TKE shear stress, and mean velocity all had local
maxima at (i) 236 min, (ii) 270 min, and (i) 457 min, with the mean velocity reaching approximately 0.08 m/s
(Figure 3). Earlier studies suggest that there is a background SSC within the water column (Van de Kreeke
et al., 1997; Wang et al., 2009), likely due to the prevailing hydrodynamic conditions and the near-bed sus-
pended sediment and inorganic matter with insufficient time to settle (Wang et al, 2009; Yang et al.,
2016). Our field data indicated that background sediment concentration remained similar throughout the
tidal cycle at the observation site. The measured mean critical velocity is thus determined for this study as
0.08 m/s. It should be noted that the estimated critical velocities (Table 1) were higher than the measured
values that corresponded to a detectable increase in sediment concentration (increase in the mean SSC);
therefore, the observed values are more appropriate to define the threshold condition of motion. Indeed,
using transport equations to define critical velocities (e.g., Pattiaratchi & Collins, 1985) may not attain the
strictly defined entrainment conditions but, instead, referring to a small amount of transport above the
threshold condition of motion (Buffington, 1999).

3.3. Spectral Analysis of Turbulence

Time series of turbulent velocities were used to obtain the frequency (f) spectra, then converted to wave
number (k) spectra following Taylor's frozen turbulence hypothesis (Soulsby, 1983). The velocity spectra exhib-
ited general agreement with the —5/3 slope in the inertial subrange (Taylor, 1938), in the wide range of
20 < k < 200/m and 30 < k < 200/m for time series TS-1 and TS-2, respectively (Figure 4). This range was
obtained through direct comparison of the —5/3 gradient of the energy dissipation equation (black solid lines
in Figure 4) with the three velocity components (i.e, v, v/, and w'). We also discarded the signal beyond this
range due to instrumental noise (Voulgaris & Trowbridge, 1998). In more details, the inertial subrange spectral
slope for the case of TS-1 was observed as 1.25 (~5/4) for u, 1.25 (~5/4) for v, and 1.67 (~5/3) for w (Figure 4a).
For TS-2 the inertial subrange spectral slope was 1.67 (~5/3) for u, 1.25 (~5/4) for v, and 1.25 (~5/4) for w
(Figure 4b). The presence of inertial subrange in both time series confirmed the existence of turbulent struc-
tures dominating the TKE transfer process at the deployment location where the motions were governed by
the inertial effects with viscous effects negligible (Ferziger, 2005). The —5/3 spectral slope in measurements
close to the seabed is not common (George et al,, 1994; Hino et al., 1983; Kularatne & Pattiaratchi, 2008; Smyth
& Hay, 2003) since the closer to the seabed, the less steep the slope of vertical velocity spectra in the inertial
subrange (Smyth & Hay, 2003). The observed spectral results consistently determined the existence of the
inertial subrange in the rest of the data set, which provided confidence for further analysis of small eddy tur-
bulent coherent structures.

3.4. Bed Shear Stress Estimates

The scatterplot of bottom shear stress term between TKE and Reynolds methods for the two time series (TS-1
and TS-2) indicates that intermittent higher shear stress (i.e., TKE- and Re-shear stress term estimations of
both TS-1 and TS-2 runs; grey dots in Figure 5) result in sediment resuspension (backscatter intensity on
Figures 6 and 7, respectively). Biron et al. (2004) suggested that in a simple turbulent boundary layer, the
TKE estimates were systematically lower than Reynolds estimates at high stress level. Comparing the two
shear stress calculations, they do not present a clear 1:1 equivalence. A clear deviation toward the Re shear
stress is noticed, specially for values greater than 0.2 x 10* m?%s? in TKE- and Re-shear stress term
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Figure 6. Time series records of the selected 2-min period between 91 and
93 min (T5-1) where U (0.039 m/s) < Ucy, measured (0.080 m/s): (a) turbulent
Re shear stress (u'w’), showing ejection (red dotted lines) and sweep (blue
dotted lines) events, and (b) 1-s mean of the backscatter. The horizontal
green solid line shows the 1 standard deviation criterion to identify the major

3.5. Comparison of the Raw Time Series

The trends in Reynolds shear stress and backscatter were examined. The
mean current velocity was 0 = 0.039 m/s, 48.75% of the measured time-
averaged critical velocity (G, = 0.08 m/s) for TS-1 (Figure 6). Overall
ejection and sweep events occurred marginally more often than up-
acceleration and down-deceleration events, resulting in a larger contribu-
tion to momentum and sediment fluxes. We considered the major ejection
and sweep events as values greater than 1 standard deviation of the
Reynolds stress term (u'w’) for both time series presented in this paper
(e, for TS1: oW > 341 x 10°°° m%s® and for TS-2:

ejection and sweep events.

Uw > 2.52 x 1079 m?%/s?), which allowed us to investigate the extreme
ejection and sweep events that falls in the 31.8% of the total Re shear
stress term of the time series. In TS-1, 75 major ejection and sweep events were analyzed in detail, identifying
39 events during ejections and 36 during sweeps as shown in Figure 6. Similarly, in TS-2 where the mean cur-
rent velocity (0 = 0.028 m/s) was 35% of the measured time-averaged critical velocity (., = 0.08 m/s), 57
major ejection and sweep events were analyzed in detail, identifying 33 events during ejections and 24 dur-
ing sweeps (Figure 7). Both time series showed that high-resuspension events (i.e., backscatter reading
showed changes greater than 1 dB in compare to background concentration) below the measured time-
averaged critical velocity were associated with major ejections and sweeps, which was consistent with all
the 20 sections investigated. In the deep water field conditions of the continental slope, identification of such
resuspension events due to turbulent bursting, particularly ejections and sweeps, supports the argument of
the nonexistence of a mean critical velocity, as results further indicate that although flow conditions were
below the measured mean critical velocity conditions, sediment resuspension was observed due to ejection
and sweep events.

3.6. Statistical and Quadrant Analysis

The contributions of u'w from the selected 2-min periods were separated

into the four quadrants of the v’-w' plane (Figures 8a and 8b). Both figures
120

showed a clear lack of large contributions in up-acceleration and down-
deceleration when compared to ejections and sweeps. The scattering of
turbulent components in the v’-w’ plane below the time-averaged mea-

(2)

u.w (mzfsz] x 107

sured critical velocity was consistent in the whole data set. Such a distribu-
tion of turbulent components in the u'-w plane established that ejection
and sweep events can occur even below a measured mean critical thresh-

backscatter (dB)

old value in deep sea conditions.

- Quadrant analysis was used to quantitatively evaluate the intermittency
and determine the contributions of the four kinds of bursting events to
the Reynolds stress for TS-2 as a representation of the 20 data sets
(Figure 9). Below the measured mean critical velocity, it was observed that
ejections and sweeps were the dominant sources of Reynolds stress gen-

50

Figure 7. Time series records of the selected 2-min period between 144 and
146 min (T5-2) where U (0.028 m/s) < U, measured (0.080 m/s): (a) turbulent
Re shear stress (u'w'), showing ejection (red dotted lines) and sweep (blue
dotted lines) events, and (b) 1-s mean of the backscatter. The horizontal
green solid line shows the 1 standard deviation criterion to identify the major

ejection and sweep events.

1
60
Time

eration. Time of occurrence, net Reynolds shear stress, and sediment flux
by ejections (30, 38, and 33%, respectively) were near equivalent with
sweeps (27, 33, and 29%, respectively), while the up-acceleration and
down-deceleration events made significantly less contributions to all three
cases. Histograms (Figure 9) showed that the upward sediment flux was
prominently accomplished by ejections (38%) and sweeps (33%), suggest-
ing that intense surge of low-speed fluid containing high sediment

(s)
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0.03 ' ' ' ) concentration and high speed fluid rushing toward the bed was the main
Ejection Up-acceleration provider of ¢w (i.e,, ejection = 33% and sweep = 29% in sediment flux).
002l o i Up-acceleration (19%) and down-deceleration (19%) events transported
significantly less sediment. Collectively, turbulent sediment flux primarily
occurred as a result of ejections and sweeps (62%), with a smaller contribu-
0.01 1 tion from up-acceleration and down-deceleration events (38%).
E 0 3.7. Wavelet Analysis of Reynolds Stresses and
= Sediment Resuspension
ool | CWT and WTC were performed with 8 Hz sampling rate over the selected
' two time series of TS-1 and TS-2 (Figures 10 and 11). In the scalograms, the
white-shaded region represents the COl where the image might be dis-
—0.02- 4 torted due to edge effects limiting the capability to investigate the lower
Down-deceleration Sweep frequencies (see section 2.3.6). Hence, we limited the investigation to
examine low-frequency events occurring lower than 0.0313 Hz.
—0.03 —0'.02 —0101 0 0.61 0‘62 0.03 In general, the results of the two presented time series (TS-1 and TS-2)
f (mls) tracked the hydrodynamics of turbulent coherent structures and asso-
0.03 T T ' T ® ciated measured contribution to the sediment flux. Data revealed that
o . within the large-scale motions (considering frequency bands <05 Hz as
Ejection Up-acceleration
002k ] large-scale motions), there existed multiscale features. For instance, (1) in
TS-1 of approximately 61-64 s, frequency band is approximately
0.125-0.5 Hz (large scale) and approximately 1-2 Hz (small scale), and (2)
0.01F - in TS-2 of approximately 41-44 s, frequency band is approximately
0.125-1 Hz (large scale) and approximately 1-2 Hz (small scale).
g 0 It also exhibited some embedding small fine-scale features. For example,
3 (1) in TS-1 at approximately 22-25 s, frequency band is approximately
1-2 Hz and (2) in TS-2 at approximately 21-24 s, frequency band is
—0.01+ i approximately 1-2 Hz) features.
These indicates that for both TS-1 and TS-2 near the bed, most of the
—oml 1 energy was concentrated within the high wavelet power zones (i.e., war-
) mer color >0.5 s) in momentum flux and sediment flux scalograms. The
Down-deceleration Sweep . P
presence of such multiscale and small-scale features within large-scale
: ; ' L motions also revealed the random nature of background turbulence
—0.03 002  -0.01 0 0.01 0.02 0.03 . . .
u' (m/s) where, with the decreasing values of frequencies, the wavelet contours

Figure 8. Classification of bursting events in u’-w space mentioning ejec-
tion, sweep, up-acceleration, and down-declaration of the selected time
series between (a) 91-93 min (TS-1) and (b) 144-146 min (T5-2) where red
and grey dots for values above and below the thresholds, respectively.

appeared to be well organized.

The comparison of high-energy wavelet power zones (i.e, warmer color,
>0.5 s) and high-frequency turbulent events also confirmed the intermit-
tent nature of turbulence throughout the records (e.g., indicated major

Percentage (%)

Time Occupied

Momentum Flux (b) Sediment Flux

(c)

ol
33 29

——

U
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Sweep
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Down-dec  Ejection  Sweep  Up-ace  Down-dec  Ejection  Sweep Up-ace  Down-dec

Figure 9. Quadrant analysis of coherent structures of the selected 2-min period between 91 to 93 min (TS-2, where U < U,
measured) Showing the (a) time occupied, (b) momentum flux (u'w’), and (c) sediment flux (¢'w’). The error bars represent
the maximum and minimum values of the analyzed total data set (twenty 2-min long sections).
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ejection and sweep events in TS-1 and TS-2 of Figures 10a and
11a respectively).

We also noticed that the major ejection and sweep events (i.e., as indicated
in Figures 10a and 11a) at lower frequency bands (~0.033-0.25 Hz in both
Figures 10b and 10c and 11b and 11¢), which lasted for a longer time
(i.e, taking >3 s time), contributed largely to transport sediments before

Frequency (Hz)

fading as shown in Figures 10c and 11¢, respectively. These emphasized
16 that not only magnitude but duration of these turbulent forces contributes
to the sediment flux.

The WTC was applied to turbulent fluctuations of momentum and sedi-
ment flux where shared features were observed (Figures 10c and 11c in
H 2 relation to the indicated ejection and sweep events in Figures 10a and
11a). Resuspension events and turbulent stresses at a range of scales

“requency (Hz)

F
=
=
A

exhibited high common power (i.e., warmer color >0.5). For instance, the
H 12 major ejection and sweep events identified between 97 and 101 s in the
TS-1 (Figure 10c) revealed a higher correlation between momentum and
sediment flux (i.e, warmer color >0.5 s) with the frequency band ranging
18 between ~0.5 and 2 Hz. At smaller frequencies, these regions of significant
common power occurred near the bed for a majority of the time.
Consistently, in both TS-1 and TS-2, the larger groups fell over short bands
| of frequency scales (predominantly 0.03125 and 0.25 s), while the rapidly
evolving bands (considering those lasting >3 s) spread over a larger range
of frequency scales (primarily between 0.0313 and 0.25 Hz) before fading.
This was evident in the color-coded contours (Figures 10d and 11d with
05 corresponding major ejection and sweep events) where momentum flux
corresponded to the contour in sediment flux within similar frequency
bands. Such results were also observed in the remaining data set.

1/4

116

3.8. Intercomparison of Threshold Approaches

50

&0
Time (g)

70 8.0 90 1;30 I.IO 120
An intercomparison between widely used sediment motion criteria

Figure 10. Squared wavelet coherence of the TS-1 between 91 and 93 min (Shields, 1936; Soulsby, 1997; Soulsby & Whitehouse, 1997; van Rijn,
(where U < Ug) showing the (a) turbulent Re shear stress (1/w/), showing 1984; primarily derived from Shields diagram) and measured mean critical

ejection (red dotted lines) and sweep (blue dotted lines) events

velocity was undertaken to examine the validity of threshold predictors in

(b) momentum flux ('w’), (<) sediment flux ('w/), and (d) coherence the deeper ocean (water depths ~375 m). The measured mean critical

between the momentum and sediment fluxes.

velocity was clearly below the estimated Shields (1936), van Rijn (1984),
Soulsby (1997), and Soulsby and Whitehouse (1997) threshold values
(i.e, 0.08 m/s < 0302, Shields, 1936; 0.520 m/s, van Rijn, 1984; 0.679 m/s, Soulsby, 1997; and 0.281 m/s,
Soulsby & Whitehouse, 1997). This indicated that the well-known empirical methods, which are well estab-
lished for the practical engineering design of movable-bed channels, potentially indicate no resuspension
at the subthreshold conditions, while the measured SSC mostly indicated otherwise.

4, Discussion

Previous studies (Lavelle & Mofjeld, 1987; Nifio et al., 2003; Nifio & Garcia, 1996) suggested the nonexistence
of a true threshold for sediment motion. This issue was explored in Salim et al. (2017) through the analysis of
high-resolution (50 Hz) acoustic data in laboratory conditions and provided evidence for resuspension of
sediments below the time-averaged measured and estimated critical velocities. However, such fluvial studies
of turbulence and sediment transport require to consider the effect of flow geometry, which may induce
artefact hydrodynamics causing significant influence on the processes being investigated. Therefore, despite
previous laboratory-based investigations (e.g. Salim et al., 2017), field investigations reported in this study
was required to clearly understand the role of coherent structures on sediment resuspension below the cal-
culated and measured time-averaged critical velocity conditions and validate laboratory findings. Results
presented in this paper, clearly establish the argument that both ejection and sweep events contribute to
momentum flux as well as sediment flux in a deep water environment where both the measured and
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calculated critical velocity rarely exceeded. Our study shows that the con-
cept of time-averaged critical velocity by itself cannot provide a full repre-

sentation of the physical processes in sediment resuspension. The
observed dependence of sediment resuspension on turbulent bursting

events (in particular, ejections and sweeps) below time-averaged critical

Frequency (Hz)

velocity conditions raises fundamental questions concerning theoretical
predictions of sediment transport in deep water conditions, requiring
the development of a new generation of turbulence incorporated
transport models.

Researchers have presented laboratory and field evidence supporting the
close correlation between the instantaneous sediment flux and instanta-
neous streamwise velocity (u), suggesting that only sweeps and up-
accelerations play a significant role in the entrainment and transport of

Frequency (Hz)

sediment, since these motions were associated with positive u’ and thus
greater streamwise velocities (Nelson et al, 1995; Thorne et al, 1989;
Weaver and Wiggs, 2008). In this study the estimated and measured
time-averaged critical velocities in natural flow conditions observed that
ejection and sweep events strongly dominated over up-acceleration and
down-deceleration events (Figures 8a and 8b). While previous investiga-
tions (e.g, Heathershaw & Thorne, 1985; Nelson et al,, 1995; Thorne et al,,
1989) found that up-acceleration and down-deceleration events consider-

Frequency (Hz)

ably contributed to sediment resuspension, our investigation showed
lower net sediment fluxes were associated with such events. Our results
obtained in conditions below time-averaged critical velocity conditions
agrees with other research, which have documented that sweeps and
ejections were the primary contributors to sediment entrainment (Best,
1992; Grass, 1971, 1974; Hurther & Lemmin, 2003; Nifio & Garcia, 1996;
Sumer & Deigaard, 1981). It should be noted that our sampling volume
was placed at a higher level above the bed (i.e. 0.303 m), and weaker up-

Figure 11. As Figure 10 but for TS-2 between 144 and 146 min.

acceleration and down-deceleration events might not have carried
sediment particles to such an elevation. Still, in our measurements,
up-acceleration and down-deceleration events contributed less effectively.

Wavelet analysis provided a complementary approach to the traditional Fourier spectrum analysis diagnos-
ing characteristics of turbulence in order to explain information about the spatial structure of the flow.
Particularly, we were interested in its frequency content and energy variation (Figures 10 and 11). The time
series TS-1 and TS-2 through wavelet analysis indicated that clusters of low-frequency coherent flow struc-
tures were initiated close to the bed, which were closely followed by periods of powerful resuspensions near
the bed, emerging from the integral scales, and decaying with time, after the termination of the turbulent
agitation. In agreement with laboratory work of Driver et al. (1987) and Simpson (1989), that indicated the
frequency at which coherent structures were generated, our study revealed that at higher frequencies the
intermittent and relatively large momentum regions exhibited a direct role in resuspension of sediment. In
the outer boundary layer region, turbulent fluctuations were dominant in driving and maintaining high-
frequency resuspensions as long as momentum was supplied. Such wavelet-based analysis has not been
applied to data from deep water systems, also validate the argument of Salim et al. (2017) and Yuan et al.
(2009), where investigation was carried out in laboratory and shallow water tidal current environments.
Therefore, it can be stated that the cross wavelet transform method was effective at visualizing and detecting
the coherent structures from the raw turbulent data, which enabled us to study the correlation between wall
turbulence structures and sediment resuspension.

5. Conclusions

A complete understanding of sediment transport will improve design of marine infrastructure, reducing the
risk factor of underestimating sediment transport rates. The uniqueness of this study is that particle
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micromechanics were examined in terms of turbulent bursting features under deep water conditions where
the mean current velocity was low. In particular, it was shown that each turbulent event, relative to the time
frame of measurement contributed to the suspension process below the mean critical velocity conditions.
Our results showed consistency with laboratory studies (e.g, Salim et al,, 2017) where the mean current flow
was below the measured mean critical velocity conditions. Quadrant analysis suggested that in agreement
with previous laboratory and field experiments, sediment flux was largely controlled by ejections and sweeps.
Instantaneous particle entrainment occurred earlier than the suggested measured time-averaged critical
velocity due to the stochastic nature of turbulence. Wavelet analysis revealed signatures of correlation
between wall turbulent structures and sedimentresuspension. Over time, turbulence occurred in slowly evol-
ving clusters that were closely followed by periods of high resuspension events near the bed, evolving from
the primary leading scales toward low frequencies and decaying in time after the termination of the turbu-
lent event. While sediment resuspension is related to a single time-averaged value of critical shear stress,
our quadrant and wavelet-based analysis highlights the importance of the turbulent bursting concept and
suggests to incorporate it in future transport models, which will contribute toward sediment resuspension
in scenarios well below the average critical threshold.
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