7 research outputs found

    MonitoringPlasmodium falciparumandPlasmodium vivaxusing microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea

    Get PDF
    Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs  = 7.1-6.4, HE  = 0.77-0.71; Madang: Rs  = 8.2-6.1, HE  = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs  = 11.4-9.3, HE  = 0.83-0.80; Madang: Rs  = 12.2-14.5, HE  = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction

    Microbial communities and processes in Arctic permafrost environments

    Get PDF
    In polar regions, huge layers of frozen ground, termed permafrost, are formed. Permafrost covers more than 25 % of the land surface and significant parts of the coastal sea shelfs. Its habitats are controlled by extreme climate and terrain conditions. Particularly, the seasonal freezing and thawing in the upper active layer of permafrost leads to distinct gradients in temperature and geochemistry. Microorganisms in permafrost environments have to survive extremely cold temperatures, freeze-thaw cycles, desiccation and starvation under long-lasting background radiation over geological time scales. Although the biology of permafrost microorganisms remains relatively unexplored, recent findings show that microbial communities in this extreme environment are composed by members of all three domains of life (Archaea, Bacteria, Eukarya), with a total biomass comparable to temperate soil ecosystems. This chapter describes the environmental conditions of permafrost and reviews recent studies on microbial processes and diversity in permafrost-affected soils as well as the role and significance of microbial communities with respect to global biogeochemical cycles

    Diagnosing malaria from some symptoms: a machine learning approach and public health implications

    No full text
    corecore