284 research outputs found

    An analysis by metabolic labelling of the encephalomyocarditis virus ribosomal frameshifting efficiency and stimulators

    Get PDF
    Programmed −1 ribosomal frameshifting is a mechanism of gene expression whereby specific signals within messenger RNAs direct a proportion of ribosomes to shift −1 nt and continue translating in the new reading frame. Such frameshifting normally depends on an RNA structure stimulator 3′^\prime-adjacent to a ‘slippery’ heptanucleotide shift site sequence. Recently we identified an unusual frameshifting mechanism in encephalomyocarditis virus, where the stimulator involves a trans\textit{trans}-acting virus protein. Thus, in contrast to other examples of −1 frameshifting, the efficiency of frameshifting in encephalomyocarditis virus is best studied in the context of virus infection. Here we use metabolic labelling to analyse the frameshifting efficiency of wild-type and mutant viruses. Confirming previous results, frameshifting depends on a G_GUU_UUU shift site sequence and a 3′^\prime-adjacent stem-loop structure, but is not appreciably affected by the ‘StopGo’ sequence present ~30 nt upstream. At late timepoints, frameshifting was estimated to be 46–76 % efficient.Wellcome Trust [088789, 106207], UK Biotechnology and Biological Research Council (BBSRC) [BB/J007072/1], European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme [grant agreement No (646891)]

    Evidence for a novel coding sequence overlapping the 5'-terminal ~90 codons of the Gill-associated and Yellow head okavirus envelope glycoprotein gene

    Get PDF
    The genus Okavirus (order Nidovirales) includes a number of viruses that infect crustaceans, causing major losses in the shrimp industry. These viruses have a linear positive-sense ssRNA genome of ~26-27 kb, encoding a large replicase polyprotein that is expressed from the genomic RNA, and several additional proteins that are expressed from a nested set of 3'-coterminal subgenomic RNAs. In this brief report, we describe the bioinformatic discovery of a new, apparently coding, ORF that overlaps the 5' end of the envelope glycoprotein encoding sequence, ORF3, in the +2 reading frame. The new ORF has a strong coding signature and, in fact, is more conserved at the amino acid level than the overlapping region of ORF3. We propose that translation of the new ORF initiates at a conserved AUG codon separated by just 2 nt from the ORF3 AUG initiation codon, resulting in a novel 86 amino acid protein

    A Review of Flaviviruses that Have No Known Arthropod Vector

    Get PDF
    Most viruses in the genus Flavivirus are horizontally transmitted between hematophagous arthropods and vertebrate hosts, but some are maintained in arthropod- or vertebrate-restricted transmission cycles. Flaviviruses maintained by vertebrate-only transmission are commonly referred to as no known vector (NKV) flaviviruses. Fourteen species and two subtypes of NKV flaviviruses are recognized by the International Committee on Taxonomy of Viruses (ICTV), and Tamana bat virus potentially belongs to this group. NKV flaviviruses have been isolated in nature almost exclusively from bats and rodents; exceptions are the two isolates of Dakar bat virus recovered from febrile humans and the recent isolations of Sokoluk virus from field-collected ticks, which raises questions as to whether it should remain classified as an NKV flavivirus. There is evidence to suggest that two other NKV flaviviruses, Entebbe bat virus and Yokose virus, may also infect arthropods in nature. The best characterized bat- and rodent-associated NKV flaviviruses are Rio Bravo and Modoc viruses, respectively, but both have received limited research attention compared to many of their arthropod-infecting counterparts. Herein, we provide a comprehensive review of NKV flaviviruses, placing a particular emphasis on their classification, host range, geographic distribution, replication kinetics, pathogenesis, transmissibility and molecular biology.A.E.F. is funded by the Wellcome Trust (Grant 106207) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant 646891)

    Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community.</p> <p>Results</p> <p>Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families <it>Astroviridae</it>, <it>Reoviridae</it>, <it>Rhabdoviridae </it>and <it>Coronaviridae</it>, respectively).</p

    Ribosome profiling of the retrovirus murine leukemia virus

    Get PDF
    Background The retrovirus murine leukemia virus (MuLV) has an 8.3 kb RNA genome with a simple 5′-gag-pol-env-3′ architecture. Translation of the pol gene is dependent upon readthrough of the gag UAG stop codon; whereas the env gene is translated from spliced mRNA transcripts. Here, we report the first high resolution analysis of retrovirus gene expression through tandem ribosome profiling (RiboSeq) and RNA sequencing (RNASeq) of MuLV-infected cells. Results Ribosome profiling of MuLV-infected cells was performed, using the translational inhibitors harringtonine and cycloheximide to distinguish initiating and elongating ribosomes, respectively. Meta-analyses of host cell gene expression demonstrated that the RiboSeq datasets specifically captured the footprints of translating ribosomes at high resolution. Direct measurement of ribosomal occupancy of the MuLV genomic RNA indicated that ~7% of ribosomes undergo gag stop codon readthrough to access the pol gene. Initiation of translation was found to occur at several additional sites within the 5′ leaders of the gag and env transcripts, upstream of their respective annotated start codons. Conclusions These experiments reveal the existence of a number of previously uncharacterised, ribosomally occupied open reading frames within the MuLV genome, with possible regulatory consequences. In addition, we provide the first direct measurements of stop codon readthrough efficiency during cellular infection.Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust) to N.I.; Wellcome Trust grant [106207] and European Research Council (ERC) grant [646891] to A.E.F.; U.K. Biotechnology and Biological Research Council (BBSRC) grant [BB/G020272/1] and U.K. Medical Research Council (MRC) grant [MR/M011747/1] to I.B. The funders played no role in the study, or writing of the manuscript

    Avoidance of reporter assay distortions from fused dual reporters

    Get PDF
    Positioning test sequences between fused reporters permits monitoring of both translation levels and framing, before and after the test sequence. Many studies, including those on recoding such as productive ribosomal frameshifting and stop codon readthrough, use distinguishable luciferases or fluorescent proteins, as reporters. Occasional distortions, due to test sequence product interference with the individual reporter activities or stabilities, are here shown to be avoidable by the introduction of tandem StopGo sequences (2A) flanking the test sequence. Using this new vector system (pSGDluc), we provide evidence for the use of a 3’ stem loop stimulator for ACP2\textit{ACP2} readthrough, but failed to detect the reported VEGFA\textit{VEGFA} readthrough.This work was supported by grants from Science Foundation Ireland (12/IP/1492 and 13/1A/1853 to J.F.A.), National Institutes of Health (R01GM114291 and R21ES022716 to M.T.H.), Wellcome Trust (106207 to A.E.F.) and the European Research Council (646891 to A.E.F.)

    Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses

    Get PDF
    Solenopsis invicta virus 2 is a single-stranded positive-sense picorna-like RNA virus with an unusual genome structure. The monopartite genome of approximately 11 kb contains four open reading frames in its 5′ one third, three of which encode proteins with homology to picornavirus-like jelly-roll fold capsid proteins. These are followed by an intergenic region, and then a single long open reading frame that covers the 3′ two thirds of the genome. The polypeptide translation of this 3′ open reading frame contains motifs characteristic of picornavirus-like helicase, protease and RNA-dependent RNA polymerase domains. Inspection of public transcriptome shotgun assembly sequences revealed five related apparently nearly complete virus genomes isolated from ant species and one from a dipteran insect. By high-throughput sequencing and in silico assembly of RNA isolated from Solenopsis invicta and four other ant species, followed by targeted Sanger sequencing, we obtained nearly complete genomes for four further viruses in the group. Four further sequences were obtained from a recent large-scale invertebrate virus study. The 15 sequences are highly divergent (pairwise amino acid identities as low as 17% in the non-structural polyprotein), but possess the same overall polycistronic genome structure distinct from all other characterized picorna-like viruses. Consequently we propose the formation of a new virus family, Polycipiviridae, to classify this clade of arthropod-infecting polycistronic picorna-like viruses. We further propose that this family be divided into three genera: Chipolycivirus (2 species), Hupolycivirus (2 species), and Sopolycivirus (11 species), with members of the latter infecting ants in at least three different subfamilies.This work was supported by a Wellcome Trust grant [106207] and a European Research Council (ERC) European Union's Horizon 2020 research and innovation programme grant [646891] to A.E.F

    Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses.

    Get PDF
    Recently, we identified a unique -2/-1 ribosomal frameshift mechanism in PRRSV, which yields two truncated forms of nonstructural protein (nsp) 2 variants, nsp2TF and nsp2N. Here, in vitro expression of individual PRRSV nsp2TF and nsp2N demonstrated their ability to suppress cellular innate immune responses in transfected cells. Two recombinant viruses were further analyzed, in which either nsp2TF was C-terminally truncated (vKO1) or expression of both nsp2TF and nsp2N was knocked out (vKO2). Host cellular mRNA profiling showed that a panel of cellular immune genes, in particular those involved in innate immunity, was upregulated in cells infected with vKO1 and vKO2. Compared to the wild-type virus, vKO1 and vKO2 expedited the IFN-α response and increased NK cell cytotoxicity, and subsequently enhanced T cell immune responses in infected pigs. Our data strongly implicate nsp2TF/nsp2N in arteriviral immune evasion and demonstrate that nsp2TF/nsp2N-deficient PRRSV is less capable of counteracting host innate immune responses
    • …
    corecore