25 research outputs found

    A Genome-Wide Immunodetection Screen in S. cerevisiae Uncovers Novel Genes Involved in Lysosomal Vacuole Function and Morphology

    Get PDF
    Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface – ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY). Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes – MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active Ξ±-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Ξ” mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events

    The quest for more effective analgesics with reduced abuse liability and fewer adverse effects: Promises, pitfalls, and future perspectives of biased agonists at opioid receptors

    No full text
    Chronic pain is a relevant health condition affecting one out of five individuals that is often not adequately treated by currently available analgesics. This, together with the dramatic increase in addicted people within the dramatic β€œopioid epidemics,” significantly spurs the quest for innovative analgesics provided with increased efficacy, reduced abuse liability, and fewer adverse effects. Within this frame, biased agonists at opioid receptors have attracted increasing interest in the last decade as they have emerged as more effective and safer candidate analgesics. In this chapter, promises, pitfalls, and future perspective of biased agonists at mu (MOR) and kappa (KOR) opioid receptors are discussed. Moreover, methodological insights are provided with regard to the most appropriate experimental settings to be employed aiming at developing novel biased KOR agonists

    Biosensors monitor ligand-selective effects at kappa opioid receptors

    No full text
    The kappa opioid receptor (KOR) has emerged as a promising therapeutic target for pain and itch treatment. There is growing interest in biased agonists that preferentially activate select signaling pathways downstream of KOR activation on the cellular level due to their therapeutic promise in retaining the analgesic and antipruritic effects and eliminating the sedative and dysphoric effects of KOR signaling on the physiological level. The concept of ligand-selective signaling includes that biased ligands promote KOR to selectively recruit one transducer or regulator protein over another, introducing bias into the signaling cascade at the very receptor-proximal level. Measuring agonist effects directly at the receptor has remained challenging and previous studies have focused on inferring agonist-selective KOR engagement with G protein relative to Ξ²-arrestin based on downstream signaling readouts. Here we discuss novel strategies to directly assess ligand-selective effects on receptor activation using KOR-interacting biosensors. The conformation-specific cytoplasmic biosensors are disconnected from the endogenous signaling machinery and provide a direct receptor-proxy readout of ligand effects in living cells. Receptor-biosensor interaction is ligand concentration dependent and can be used to determine relative ligand potency and efficacy. In addition, the biosensors reveal the existence of two dimensions of agonist bias in the cellular context: Firstly, agonists can selectively produce discrete protein-engaged KOR states and secondly, agonists can differ in the precise subcellular location at which they activate KOR. We discuss the value and the limitations of using orthogonal receptor-interacting biosensors in the quest to understand functional selectivity amongst KOR agonists in the cellular context
    corecore