45 research outputs found

    Addressing Soil Degradation in EU Agriculture: Relevant Processes, Practices and Policies - Report on the project 'Sustainable Agriculture and Soil Conservation (SoCo)'

    Get PDF
    Agriculture occupies a substantial proportion of the European land, and consequently plays an important role in maintaining natural resources and cultural landscapes, a precondition for other human activities in rural areas. Unsustainable farming practices and land use, including mismanaged intensification as well as land abandonment, have an adverse impact on natural resources. Having recognised the environmental challenges of agricultural land use, the European Parliament requested the European Commission in 2007 to carry out a pilot project on "Sustainable Agriculture and Soil Conservation through simplified cultivation techniques" (SoCo). The project originated from a close cooperation between the Directorate-General for Agriculture and Rural Development (DG AGRI) and the Joint Research Centre (JRC). It was implemented by the Institute for Prospective Technological Studies (IPTS) and the Institute for Environment and Sustainability (IES). This report presents the findings of a stock-taking of the current situation with respect to soil degradation processes, soil-friendly farming practices and relevant policy measures within an EU-wide perspective. This overview includes the results of the survey on the national/regional implementation of EU policies and national policies, a classification of the described soil degradation processes, soil conservation practices and policy measures, and finally the outcome of the Stakeholder Workshop which took place on 22 May 2008 in Brussels.JRC.J.5-Agriculture and Life Sciences in the Econom

    Use of Multi-Seasonal Satellite Images to Predict SOC from Cultivated Lands in a Montane Ecosystem

    No full text
    Although algorithms are well developed to predict soil organic carbon (SOC), selecting appropriate covariates to improve prediction accuracy is an ongoing challenge. Terrain attributes and remote sensing data are the most common covariates for SOC prediction. This study tested the predictive performance of nine different combinations of topographic variables and multi-season remotely sensed data to improve the prediction of SOC in the cultivated lands of a middle mountain catchment of Nepal. The random forest method was used to predict SOC contents, and the quantile regression forest for quantifying the prediction uncertainty. Prediction of SOC contents was improved when remote sensing data of multiple seasons were used together with the terrain variables. Remote sensing data of multiple seasons capture the dynamic conditions of surface soils more effectively than using an image of a single season. It is concluded that the use of remote sensing images of multiple seasons instead of a snapshot of a single period may be more effective for improving the prediction of SOC in a digital soil mapping framework. However, an image with the right timing of cropping season can provide comparable results if a parsimonious model is preferred

    Use of Multi-Seasonal Satellite Images to Predict SOC from Cultivated Lands in a Montane Ecosystem

    No full text
    Although algorithms are well developed to predict soil organic carbon (SOC), selecting appropriate covariates to improve prediction accuracy is an ongoing challenge. Terrain attributes and remote sensing data are the most common covariates for SOC prediction. This study tested the predictive performance of nine different combinations of topographic variables and multi-season remotely sensed data to improve the prediction of SOC in the cultivated lands of a middle mountain catchment of Nepal. The random forest method was used to predict SOC contents, and the quantile regression forest for quantifying the prediction uncertainty. Prediction of SOC contents was improved when remote sensing data of multiple seasons were used together with the terrain variables. Remote sensing data of multiple seasons capture the dynamic conditions of surface soils more effectively than using an image of a single season. It is concluded that the use of remote sensing images of multiple seasons instead of a snapshot of a single period may be more effective for improving the prediction of SOC in a digital soil mapping framework. However, an image with the right timing of cropping season can provide comparable results if a parsimonious model is preferred

    Digital Mapping of Soil Organic Matter and Cation Exchange Capacity in a Low Relief Landscape Using LiDAR Data

    No full text
    Soil organic matter content (SOM) and cation exchange capacity (CEC) are important agronomic soil properties. Accurate, high-resolution spatial information of SOM and CEC are needed for precision farm management. The objectives of this study were to: (1) map SOM and CEC in a low relief area using only lidar elevation-based terrain attributes, and (2) compare the prediction accuracy of SOM and CEC maps created by universal kriging, Cubist, and random forest with Soil Survey Geographic (SSURGO) database. For this study, 174 soil samples were collected from a depth from 0 to 10 cm. The topographic wetness index, topographic position index, multi resolution valley bottom flatness, and multi resolution ridge top flatness indices generated from the lidar data were used as covariates in model predictions. No major differences were found in the prediction performance of all selected models. For SOM, the predictive models provided results with coefficient of determination (R2) (0.44–0.45), root mean square error (RMSE) (0.8–0.83%), bias (0–0.22%), and concordance correlation coefficient (ρc) (0.56–0.58). For CEC, the R2 ranged from 0.39 to 0.44, RMSE ranged from 3.62 to 3.74 cmolc kg−1, bias ranged from 0–0.17 cmolc kg−1, and ρc ranged from 0.55 to 0.57. We also compared the results to the USDA Soil Survey Geographic (SSURGO) data. For both SOM and CEC, SSURGO was comparable with our predictive models, except for few map units where both SOM and CEC were either under or over predicted

    Spatial-Temporal Changes of Soil Organic Carbon Content in Wafangdian, China

    No full text
    Soil organic carbon (SOC) plays an important role in soil fertility and the global carbon cycle. A better understanding of spatial-temporal changes of SOC content is essential for soil resource management, emission studies, and carbon accounting. In this study, we used a boosted regression trees (BRT) model to map distributions of SOC content in the topsoil (0–20 cm) and evaluated its temporal dynamics from 1990–2010 in Wafangdian City, northeast of China. A set of 110 (1990) and 127 (2010) soil samples were collected and nine environment variables (including topography and vegetation) were used. A 10-fold cross-validation was used to evaluate model performance as well as predictive uncertainty. Accuracy assessments showed that R2 of 0.53 and RMSE (Root-mean-square error) of 9.7 g∙kg−1 for 1990, and 0.55, and 5.2 g∙kg−1 for 2010. Elevation and NDVI (Normalized Difference Vegetation Index) were the two important variables affecting SOC distribution. Results showed that mean SOC content decreased from 19 ± 14 to 18 ± 8 g∙kg−1 over a 20 year period. The maps of SOC represented a decreasing trend from south to north across the study area in both periods. Rapid urbanization and land-use changes were accountable for declining SOC levels. We believe predicted maps of SOC can help local land managers and government agencies to evaluate soil quality and assess carbon sequestration potential and carbon credits

    An improved similarity-based approach to predicting and mapping soil organic carbon and soil total nitrogen in a coastal region of northeastern China

    No full text
    Soil organic carbon (SOC) and soil total nitrogen (STN) are major soil indicators for soil quality and fertility. Accurate mapping SOC and STN in soils would help both managed and natural soils and ecosystem management. This study developed an improved similarity-based approach (ISA) to predicting and mapping topsoil (0–20 cm soil depth) SOC and STN in a coastal region of northeastern China. Six environmental variables including elevation, slope gradient, topographic wetness index, the mean annual temperature, the mean annual temperature, and normalized difference vegetation index were used as predictors. Soil survey data in 2012 was designed based on the clustering of the study area into six climatic vegetation landscape units. In each landscape unit, 20–25 sampling points were determined at different landform positions considering local climate, soil type, elevation and other environmental factors, and finally 126 sampling points were obtained. Soil sampling from the depth of 0–20 cm were used for model prediction and validation. The ISA model performance was compared with the geographically weighted regression (GWR), regression kriging (RK), boosted regression trees (BRT) considering mean absolute prediction error (MAE), root mean square error (RMSE), coefficient of determination (R2), and maximum relative difference (RD) indices. We found that the ISA method performed best with the highest R2 and lowest MAE, RMSE compared to GWR, RK, and BRT methods. The ISA method could explain 76% and 83% of the total SOC and STN variability, respectively, 12–40% higher than other models in the study area. Elevation had the largest influence on SOC and STN distribution. We conclude that the developed ISA model is robust and effective in mapping SOC and STN, particularly in the areas with complex vegetation-landscape when limited samples are available. The method needs to be tested for other regions in our future research

    Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra.

    No full text
    There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR) spectra in the laboratory with remote sensing (RS) images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l'Observation de la Terre (SPOT5), Landsat Data Continuity Mission (Landsat 8) images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were very important predictors in SOC spatial models. Furthermore, the 'upland model' was able to more accurately predict SOC compared with the 'upland & wetland model'. However, the separately calibrated 'upland and wetland model' did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis-NIR spectroscopy adds critical information that significantly improves the prediction accuracy of SOC compared to using RS data alone. We recommend the incorporation of laboratory spectra with RS data and other environmental data to improve soil spatial modeling and digital soil mapping (DSM)

    Influence of Land Use and Topographic Factors on Soil Organic Carbon Stocks and Their Spatial and Vertical Distribution

    No full text
    Soil organic carbon (SOC) plays a critical role in major ecosystem processes, agriculture, and climate mitigation. Accurate SOC predictions are challenging due to natural variation, as well as variation in data sources, sampling design, and modeling approaches. The goal of this study was to (i) understand SOC stock distribution due to land use (restored prairie grass—PG; lawn grass—LG; and forest—F), and local topography, and (ii) assess the scalability of SOC stock predictions from the study site in North Carolina (Lat: 36°7′ N; Longitude: 80°16′ W) to the geographic extension of the Fairview soil series based on the US Soil Survey Geographic (gSSURGO) database. Overall, LG had the highest SOC stock (82 Mg ha−1) followed by PG (79 Mg ha−1) and forest (73.1 Mg ha−1). SOC stock decreased with the depth for LG and PG, which had about 60% concentrated on the surface horizon (0–23 cm), while forest had only 40%. The differences between measured SOC stocks and those estimated by gSSURGO and modeled based on land use for the Fairview series extent were comparable. However, subtracting maps of the uncertainty predictions based on the 90% confidence interval (CI) derived from the measured values and estimated gSSURGO upper and lower values (an estimated CI) resulted in a range from −17 to 41 Mg ha−1 which, when valued monetarily, varied from USD 33 million to USD 824 million for the Fairview soil series extent. In addition, the spatial differences found by subtracting the gSSURGO estimations from measured uncertainties aligned with the county administrative boundaries. The distribution of SOC stock was found to be related to land use, topography, and soil depth, while accuracy predictions were also influenced by data source
    corecore