170 research outputs found

    Perinatal exposure to foodborne inorganic nanoparticles: A role in the susceptibility to food allergy?

    Get PDF
    Food allergy (FA) is an inappropriate immune response against dietary antigens. Various environmental factors during perinatal life may alter the establishment of intestinal homeostasis, thereby predisposing individuals to the development of such immune-related diseases. Among these factors, recent studies have emphasized the chronic dietary exposure of the mother to foodborne inorganic nanoparticles (NP) such as nano-sized silicon dioxide (SiO2), titanium dioxide (TiO2) or silver (Ag). Indeed, there is growing evidence that these inorganic agents, used as food additives in various products, as processing aids during food manufacturing or in food contact materials, can cross the placental barrier and reach the developing fetus. Excretion in milk is also suggested, hence continuing to expose the neonate during a critical window of susceptibility. Due to their immunotoxical and biocidal properties, such exposure may disrupt the host-intestinal microbiota's beneficial exchanges and may interfere with intestinal barrier and gut-associated immune system development in fetuses then the neonates. The resulting dysregulated intestinal homeostasis in the infant may significantly impede the induction of oral tolerance, a crucial process of immune unresponsiveness to food antigens. The current review focuses on the possible impacts of perinatal exposure to foodborne NP during pregnancy and early life on the susceptibility to developing FA

    Assessment of the Sensitizing Potential of Processed Peanut Proteins in Brown Norway Rats: Roasting Does Not Enhance Allergenicity

    Get PDF
    Background: IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix. [br/] Objectives: The aim was to investigate if thermal processing increases sensitization potential of whole peanuts via the oral route. In parallel, the effect of heating on sensitization potential of the major peanut allergen Ara h 1 was assessed via the intraperitoneal route. Methods: Sensitization potential of processed peanut products and Ara h 1 was examined in Brown Norway (BN) rats by oral administration of blanched or oil-roasted peanuts or peanut butter or by intraperitoneal immunization of purified native (N-), heated (H-) or heat glycated (G-) Ara h 1. Levels of specific IgG and IgE were determined by ELISA and IgE functionality was examined by rat basophilic leukemia (RBL) cell assay. [br/] Results: In rats dosed orally, roasted peanuts induced significant higher levels of specific IgE to NAra h 1 and 2 than blanched peanuts or peanut butter but with the lowest level of RBL degranulation. However, extract from roasted peanuts was found to be a superior elicitor of RBL degranulation. Process-modified Ara h 1 had similar sensitizing capacity as NAra h 1 but specific IgE reacted more readily with process-modified Ara h 1 than with native. [br/] Conclusions: Peanut products induce functional specific IgE when dosed orally to BN rats. Roasted peanuts do not have a higher sensitizing capacity than blanched peanuts. In spite of this, extract from roasted peanuts is a superior elicitor of RBL cell degranulation irrespectively of the peanut product used for sensitization. The results also suggest that new epitopes are formed or disclosed by heating Ara h 1 without glucose

    Effect of simulated gastro-duodenal digestion on the allergenic reactivity of beta-lactoglobulin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cow's milk (CM) allergy affects about 2% of infants. The allergenicity of dietary proteins, including those from CM, has been related to their digestibility although the generality of the link and its causality remains to be demonstrated. In this study we use an in vitro digestion system, to investigate the digestibility of ÎČ-lactoglobulin (blg) during gastrointestinal transit and to assess the impact of this process on blg allergenic reactivity in CM allergic children.</p> <p>Methods</p> <p>Blg digesta were prepared using an <it>in vitro </it>digestion protocol simulating either gastric digestion alone or followed by duodenal digestion with or without phosphatidylcholine (PC). Biochemical analysis of blg digesta was performed by SDS-PAGE and their concentration was measured by a sandwich ELISA. Assessment of their allergenic reactivity was done <it>in vitro </it>by EAST inhibition, specific basophil activation (basotest) and lymphocyte proliferation (PCNA-flow cytometry) assays using sera and cells from patients allergic to blg and <it>in vivo </it>by skin prick testing (SPT) of these patients.</p> <p>Results</p> <p>Blg was only broken down to smaller peptides after gastro-duodenal digestion although a sizeable amount of intact protein still remained. Digestion did not modify the IgE binding capacity of blg except for gastro-duodenal digestion performed in the absence of PC. These results are consistent with the quantity of intact blg remaining in the digesta. Overall both gastric and gastroduodenal digestion enhanced activation of sensitized basophils and proliferation of sensitized lymphocytes by blg. However, there was a tendency towards reduction in mean diameter of SPT following digestion, the PC alone during phase 1 digestion causing a significant increase in mean diameter.</p> <p>Conclusions</p> <p>Digestion did not reduce the allergenic reactivity of blg to a clinically insignificant extent, PC inhibiting digestion and thereby protecting blg allergenic reactivity. SPT reactivity was reduced compared to blg immunoreactivity in <it>in vitro </it>tests.</p

    Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry

    Get PDF
    Peptide marker identification is one of the most important steps in the development of a mass spectrometry (MS) based method for allergen detection, since the robustness and sensitivity of the overall analytical method will strictly depend on the reliability of the proteotypic peptides tracing for each allergen. The European legislation in place issues the mandatory labelling of fourteen allergenic ingredients whenever used in different food formulations. Among these, six allergenic ingredients, namely milk, egg, peanut, soybean, hazelnut and almond, can be prioritized in light of their higher occurrence in food recalls for undeclared presence with serious risk decision. In this work, we described the results of a comprehensive evaluation of the current literature on MS-based allergen detection aiming at collecting all available information about proteins and peptide markers validated in independent studies for the six allergenic ingredients of interest. The main features of the targeted proteins were commented reviewing all details available about known isoforms and sequence homology particularly in plant-derived allergens. Several critical aspects affecting peptide markers reliability were discussed and according to this evaluation a final short-list of candidate markers was compiled likely to be standardized and implemented in MS methods for allergen analysis

    Immunological and Metabolomic Impacts of Administration of Cry1Ab Protein and MON 810 Maize in Mouse

    Get PDF
    We have investigated the immunological and metabolomic impacts of Cry1Ab administration to mice, either as a purified protein or as the Cry1Ab-expressing genetically modified (GM) MON810 maize. Humoral and cellular specific immune responses induced in BALB/cJ mice after intra-gastric (i.g.) or intra-peritoneal (i.p.) administration of purified Cry1Ab were analyzed and compared with those induced by proteins of various immunogenic and allergic potencies. Possible unintended effects of the genetic modification on the pattern of expression of maize natural allergens were studied using IgE-immunoblot and sera from maize-allergic patients. Mice were experimentally sensitized (i.g. or i.p. route) with protein extracts from GM or non-GM maize, and then anti-maize proteins and anti-Cry1Ab–induced immune responses were analyzed. In parallel, longitudinal metabolomic studies were performed on the urine of mice treated via the i.g. route. Weak immune responses were observed after i.g. administration of the different proteins. Using the i.p. route, a clear Th2 response was observed with the known allergenic proteins, whereas a mixed Th1/Th2 immune response was observed with immunogenic protein not known to be allergenic and with Cry1Ab. This then reflects protein immunogenicity in the BALB/c Th2-biased mouse strain rather than allergenicity. No difference in natural maize allergen profiles was evidenced between MON810 and its non-GM comparator. Immune responses against maize proteins were quantitatively equivalent in mice treated with MON810 vs the non-GM counterpart and no anti-Cry1Ab–specific immune response was detected in mice that received MON810. Metabolomic studies showed a slight “cultivar” effect, which represented less than 1% of the initial metabolic information. Our results confirm the immunogenicity of purified Cry1Ab without evidence of allergenic potential. Immunological and metabolomic studies revealed slight differences in mouse metabolic profiles after i.g. administration of MON810 vs its non-GM counterpart, but no significant unintended effect of the genetic modification on immune responses was seen
    • 

    corecore