166 research outputs found

    Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to investigate the indigenous utilization of termite mounds and termites in a rain-fed rice growing village in the central plain of Laos, where rice production is low and varies year-to-year, and to assess the possibility of sustainable termite mound utilization in the future. This research was carried out from 2007 to 2009.</p> <p>Methods</p> <p>The termites were collected from their mounds and surrounding areas and identified. Twenty villagers were interviewed on their use of termites and their mounds in the village. Sixty-three mounds were measured to determine their dimensions in early March, early July and middle to late November, 2009.</p> <p>Results</p> <p>Eleven species of Termitidae were recorded during the survey period. It was found that the villagers use termite mounds as fertilizer for growing rice, vegetable beds and charcoal kilns. The villagers collected termites for food and as feed for breeding fish. Over the survey period, 81% of the mounds surveyed increased in volume; however, the volume was estimated to decrease by 0.114 m<sup>3 </sup>mound<sup>-1 </sup>year<sup>-1 </sup>on average due to several mounds being completely cut out.</p> <p>Conclusion</p> <p>It was concluded that current mound utilization by villagers is not sustainable. To ensure sustainable termite utilization in the future, studies should be conducted to enhance factors that promote mound restoration by termites. Furthermore, it will be necessary to improve mound conservation methods used by the villagers after changes in the soil mass of mounds in paddy fields and forests has been measured accurately. The socio-economic factors that affect mound utilization should also be studied.</p

    Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks

    Full text link
    We propose Absum, which is a regularization method for improving adversarial robustness of convolutional neural networks (CNNs). Although CNNs can accurately recognize images, recent studies have shown that the convolution operations in CNNs commonly have structural sensitivity to specific noise composed of Fourier basis functions. By exploiting this sensitivity, they proposed a simple black-box adversarial attack: Single Fourier attack. To reduce structural sensitivity, we can use regularization of convolution filter weights since the sensitivity of linear transform can be assessed by the norm of the weights. However, standard regularization methods can prevent minimization of the loss function because they impose a tight constraint for obtaining high robustness. To solve this problem, Absum imposes a loose constraint; it penalizes the absolute values of the summation of the parameters in the convolution layers. Absum can improve robustness against single Fourier attack while being as simple and efficient as standard regularization methods (e.g., weight decay and L1 regularization). Our experiments demonstrate that Absum improves robustness against single Fourier attack more than standard regularization methods. Furthermore, we reveal that robust CNNs with Absum are more robust against transferred attacks due to decreasing the common sensitivity and against high-frequency noise than standard regularization methods. We also reveal that Absum can improve robustness against gradient-based attacks (projected gradient descent) when used with adversarial training.Comment: 16 pages, 39 figure

    Identification of nesfatin-1 as a satiety molecule in the hypothalamus

    Get PDF
    The brain hypothalamus contains certain secreted molecules that are important in regulating feeding behaviour. Here we show that nesfatin, corresponding to NEFA/nucleobindin2 (NUCB2), a secreted protein of unknown function, is expressed in the appetite-control hypothalamic nuclei in rats. Intracerebroventricular (i.c.v.) injection of NUCB2 reduces feeding. Rat cerebrospinal fluid contains nesfatin-1, an amino-terminal fragment derived from NUCB2, and its expression is decreased in the hypothalamic paraventricular nucleus under starved conditions. I.c.v. injection of nesfatin-1 decreases food intake in a dose-dependent manner, whereas injection of an antibody neutralizing nesfatin-1 stimulates appetite. In contrast, i.c.v. injection of other possible fragments processed from NUCB2 does not promote satiety, and conversion of NUCB2 to nesfatin-1 is necessary to induce feeding suppression. Chronic i.c.v. injection of nesfatin-1 reduces body weight, whereas rats gain body weight after chronic i.c.v. injection of antisense morpholino oligonucleotide against the gene encoding NUCB2. Nesfatin-1-induced anorexia occurs in Zucker rats with a leptin receptor mutation, and an anti-nesfatin-1 antibody does not block leptin-induced anorexia. In contrast, central injection of alpha-melanocyte-stimulating hormone elevates NUCB2 gene expression in the paraventricular nucleus, and satiety by nesfatin-1 is abolished by an antagonist of the melanocortin-3/4 receptor. We identify nesfatin-1 as a satiety molecule that is associated with melanocortin signalling in the hypothalamus
    corecore