4,413 research outputs found

    Study of the Hole Transport Processes in Solution-Processed Layers of the Wide Bandgap Semiconductor Copper(I) Thiocyanate (CuSCN)

    Get PDF
    Wide bandgap hole-transporting semiconductor copper(I) thiocyanate (CuSCN) has recently shown promise both as a transparent p-type channel material for thin-film transistors and as a hole-transporting layer in organic light-emitting diodes and organic photovoltaics. Herein, the hole-transport properties of solution-processed CuSCN layers are investigated. Metal-insulator-semiconductor capacitors are employed to determine key material parameters including: dielectric constant [5.1 (±1.0)], flat-band voltage [-0.7 (±0.1) V], and unintentional hole doping concentration [7.2 (±1.4) × 1017 cm-3]. The density of localized hole states in the mobility gap is analyzed using electrical field-effect measurements; the distribution can be approximated invoking an exponential function with a characteristic energy of 42.4 (±0.1) meV. Further investigation using temperature-dependent mobility measurements in the range 78-318 K reveals the existence of three transport regimes. The first two regimes observed at high (303-228 K) and intermediate (228-123 K) temperatures are described with multiple trapping and release and variable range hopping processes, respectively. The third regime observed at low temperatures (123-78 K) exhibits weak temperature dependence and is attributed to a field-assisted hopping process. The transitions between the mechanisms are discussed based on the temperature dependence of the transport energy. The wide bandgap p-type semiconductor copper(I) thiocyanate (CuSCN) has the potential to replace conventional hole-transport materials in numerous opto/electronics applications. This work provides a comprehensive analysis of the charge transport properties of solution-processed CuSCN layers. Various techniques are employed to evaluate the dielectric constant, flat-band voltage, unintentional doping concentration, density of states in the mobility gap, and hole-transport mechanisms.Department of Applied PhysicsMaterials Research Centr

    Origin of Polarization in Bismuth Sodium Titanate-Based Ceramics.

    Get PDF
    The classical view of the structural changes that occur at the ferroelectric transition in perovskite-structured systems, such as BaTiO3, is that polarization occurs due to the off-center displacement of the B-site cations. Here, we show that in the bismuth sodium titanate (BNT)-based composition 0.2(Ba0.4Sr0.6TiO3)-0.8(Bi0.5Na0.5TiO3), this model does not accurately describe the structural situation. Such BNT-based systems are of interest as lead-free alternatives to currently used materials in a variety of piezo-/ferroelectric applications. A combination of high-resolution powder neutron diffraction, impedance spectroscopy, and ab initio calculations reveals that Ti4+ contributes less than a third in magnitude to the overall polarization and that the displacements of the O2- ions and the A-site cations, particularly Bi3+, are very significant. The detailed examination of the ferroelectric transition in this system offers insights applicable to the understanding of such transitions in other ferroelectric perovskites, particularly those containing lone pair elements

    Geographic variation in the treatment of non-ST-segment myocardial infarction in the English National Health Service: a cohort study

    Get PDF
    Objectives: To investigate geographic variation in guideline-indicated treatments for NSTEMI in the English National Health Service (NHS). Design: Cohort study using registry data from the Myocardial Ischaemia National Audit Project. Setting: All Clinical Commissioning Groups (CCGs) (n=211) in the English NHS. Participants: 357,228 patients with NSTEMI between 1st January, 2003 and 30th June, 2013. Main outcome measure: Proportion of eligible NSTEMI who received all eligible guideline-indicated treatments (optimal care) according to the date of guideline publication. Results: The proportion of NSTEMI who received optimal care was low (48,257/357,228; 13.5%) and varied between CCGs (median 12.8%, interquartile range 0.7 to 18.1%). The greatest geographic variation was for aldosterone antagonists (16.7%, 0.0 to 40.0%) and least for use of an electrocardiogram (96.7%, 92.5 to 98.7%). The highest rates of care were for acute aspirin (median 92.8%, interquartile range 88.6 to 97.1%), and aspirin (90.1%, 85.1 to 93.3%) and statins (86.4%, 82.3 to 91.2%) at hospital discharge. The lowest rates were for smoking cessation advice (median 11.6%, interquartile range 8.7 to 16.6%), dietary advice (32.4%, 23.9 to 41.7%) and the prescription of P2Y12 inhibitors (39.7%, 32.4 to 46.9%). After adjustment for case mix, nearly all (99.6%) of the variation was due to between hospitals differences (median 64.7%, interquartile range 57.4% to 70.0%; between hospital variance: 1.92, 95% confidence interval 1.51 to 2.44; interclass correlation 0.996, 0.976 to 0.999). Conclusions: Across the English NHS, the optimal use of guideline-indicated treatments for NSTEMI was low. Variation in the use of specific treatments for NSTEMI was mostly explained by between-hospital differences in care. Performance-based commissioning may increase the use of NSTEMI treatments and, therefore, reduce premature cardiovascular deaths

    The DEEP2 Galaxy Redshift Survey: The Evolution of Void Statistics from z~1 to z~0

    Full text link
    We present measurements of the void probability function (VPF) at z~1 using data from the DEEP2 Redshift Survey and its evolution to z~0 using data from the Sloan Digital Sky Survey (SDSS). We measure the VPF as a function of galaxy color and luminosity in both surveys and find that it mimics trends displayed in the two-point correlation function, ξ\xi; namely that samples of brighter, red galaxies have larger voids (i.e. are more strongly clustered) than fainter, blue galaxies. We also clearly detect evolution in the VPF with cosmic time, with voids being larger in comoving units at z~0. We find that the reduced VPF matches the predictions of a `negative binomial' model for galaxies of all colors, luminosities, and redshifts studied. This model lacks a physical motivation, but produces a simple analytic prediction for sources of any number density and integrated two-point correlation function, \bar{\xi}. This implies that differences in the VPF across different galaxy populations are consistent with being due entirely to differences in the population number density and \bar{\xi}. The robust result that all galaxy populations follow the negative binomial model appears to be due to primarily to the clustering of dark matter halos. The reduced VPF is insensitive to changes in the parameters of the halo occupation distribution, in the sense that halo models with the same \bar{\xi} will produce the same VPF. For the wide range of galaxies studied, the VPF therefore does not appear to provide useful constraints on galaxy evolution models that cannot be gleaned from studies of \bar{\xi} alone. (abridged)Comment: 17 pages, 15 figures, ApJ accepte

    The role of SPARC in extracellular matrix assembly

    Get PDF
    SPARC is a collagen-binding matricellular protein. Expression of SPARC in adult tissues is frequently associated with excessive deposition of collagen and SPARC-null mice fail to generate a robust fibrotic response to a variety of stimuli. This review summarizes recent advancements in the characterization of the binding of SPARC to collagens and describes the results of studies that implicate a function for SPARC in the regulation of the assembly of basal lamina and fibrillar collagen in the ECM. Potential cellular mechanisms that underlie SPARC activity in ECM deposition are also explored

    Local Optical Probe of Motion and Stress in a multilayer graphene NEMS

    Full text link
    Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micronic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics

    Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2

    Full text link
    The discovery of a new family of high Tc materials, the iron arsenides (FeAs), has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent, for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. It is also now well established that the parent non-superconducting phases are itinerant magnets, and that superconductivity can be induced by either chemical substitution or application of pressure, in sharp contrast to the cuprate family of materials. The structure and properties of chemically substituted samples are known to be intimately linked, however, remarkably little is known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2, namely suppression of the tetragonal to orthorhombic phase transition and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same behavior under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. These results suggest that modification of the Fermi surface by structural distortions is more important than charge doping for inducing superconductivity in BaFe2As2

    Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes

    Get PDF
    Protein-DNA complexes with loops play a fundamental role in a wide variety of cellular processes, ranging from the regulation of DNA transcription to telomere maintenance. As ubiquitous as they are, their precise in vivo properties and their integration into the cellular function still remain largely unexplored. Here, we present a multilevel approach that efficiently connects in both directions molecular properties with cell physiology and use it to characterize the molecular properties of the looped DNA-lac repressor complex while functioning in vivo. The properties we uncover include the presence of two representative conformations of the complex, the stabilization of one conformation by DNA architectural proteins, and precise values of the underlying twisting elastic constants and bending free energies. Incorporation of all this molecular information into gene-regulation models reveals an unprecedented versatility of looped DNA-protein complexes at shaping the properties of gene expression.Comment: Open Access article available at http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035
    corecore