4,069 research outputs found

    Atmospherically relevant core-shell aerosol studied using optical trapping and Mie scattering

    Get PDF
    Solid core–liquid shell aerosols have been trapped in a counter-propagating optical trap confirming potential core–shell morphology in the atmosphere.</p

    On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities

    Get PDF
    We have examined the inter- and intra-group seasonal succession of 113 diatom and dinoflagellate taxa, as surveyed by the Continuous Plankton Recorder (CPR) in the North Atlantic, by grouping taxa according to two key functional traits: cell size (mg C cell21) and trophic strategy (photoautotrophy, mixotrophy, or heterotrophy). Mixotrophic dinoflagellates follow photoautotrophic diatoms but precede their obligate heterotrophic counterparts in the succession because of the relative advantages afforded by photosynthesizing when light and nutrients are available in spring. The mean cell size of the sampled diatoms is smallest in the summer, likely because of the higher specific nutrient affinity of smaller relative to larger cells. Contrastingly, we hypothesize that mixotrophy diminishes the size selection based on nutrient limitation and accounts for the lack of a seasonal size shift among surveyed dinoflagellates. Relatively small, heterotrophic dinoflagellates (mg C cell21 , 1023) peak after other, larger dinoflagellates, in part because of the increased abundance of their small prey during nutrientdeplete summer months. The largest surveyed diatoms (mg C cell21 . 1022) bloom later than others, and we hypothesize that this may be because of their relatively slow maximum potential growth rates and high internal nutrient storage, as well as to the slower predation of these larger cells. The new trait database and analysis presented here helps translate the taxonomic information of the CPR survey into metrics that can be directly compared with trait-based models

    Contact Manifolds, Contact Instantons, and Twistor Geometry

    Full text link
    Recently, Kallen and Zabzine computed the partition function of a twisted supersymmetric Yang-Mills theory on the five-dimensional sphere using localisation techniques. Key to their construction is a five-dimensional generalisation of the instanton equation to which they refer as the contact instanton equation. Subject of this article is the twistor construction of this equation when formulated on K-contact manifolds and the discussion of its integrability properties. We also present certain extensions to higher dimensions and supersymmetric generalisations.Comment: v3: 28 pages, clarifications and references added, version to appear in JHE

    Is decoupling GDP growth from environmental impact possible?

    Get PDF
    © 2016 Ward et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing

    Theoretical Uncertainties in Electroweak Boson Production Cross Sections at 7, 10, and 14 TeV at the LHC

    Full text link
    We present an updated study of the systematic errors in the measurements of the electroweak boson cross-sections at the LHC for various experimental cuts for a center of mass energy of 7, 10 and 14 TeV. The size of both electroweak and NNLO QCD contributions are estimated, together with the systematic error from the parton distributions. The effects of new versions of the MSTW, CTEQ, and NNPDF PDFs are considered.Comment: PDFLatex with JHEP3.cls. 22 pages, 43 figures. Version 2 adds the CT10W PDF set to analysis and updates the final systematic error table and conclusions, plus several citations and minor wording changes. Version 3 adds some references on electroweak and mixed QED/QCD corrections. Version 4 adds more references and acknowledgement

    Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism

    Get PDF
    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pH(o)) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pH(o) can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pH(o) from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)(i)) mobilization, whereas raising pH(o) to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)(o)). Similar pH(o) effects were observed for Ca(2+)(o)-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)(i) mobilization. Intracellular pH was unaffected by acute 0.4-unit pH(o) changes, and the presence of physiologic albumin concentrations failed to attenuate the pH(o)-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pH(o) sensitivity. Finally, pathophysiologic pH(o) elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pH(o) changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo
    • …
    corecore