19 research outputs found

    Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen

    Get PDF
    Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications.

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases

    Recognition and Activation Domains Contribute to Allele-Specific Responses of an Arabidopsis NLR Receptor to an Oomycete Effector Protein

    No full text
    In plants, specific recognition of pathogen effector proteins by nucleotide-binding leucine-rich repeat (NLR) receptors leads to activation of immune responses. RPP1, an NLR from Arabidopsis thaliana, recognizes the effector ATR1, from the oomycete pathogen Hyaloperonospora arabidopsidis, by direct association via C-terminal leucine-rich repeats (LRRs). Two RPP1 alleles, RPP1-NdA and RPP1-WsB, have narrow and broad recognition spectra, respectively, with RPP1-NdA recognizing a subset of the ATR1 variants recognized by RPP1-WsB. In this work, we further characterized direct effector recognition through random mutagenesis of an unrecognized ATR1 allele, ATR1-Cala2, screening for gain-of-recognition phenotypes in a tobacco hypersensitive response assay. We identified ATR1 mutants that a) confirm surface-exposed residues contribute to recognition by RPP1, and b) are recognized by and activate the narrow-spectrum allele RPP1-NdA, but not RPP1-WsB, in co-immunoprecipitation and bacterial growth inhibition assays. Thus, RPP1 alleles have distinct recognition specificities, rather than simply different sensitivity to activation. Using chimeric RPP1 constructs, we showed that RPP1-NdA LRRs were sufficient for allele-specific recognition (association with ATR1), but insufficient for receptor activation in the form of HR. Additional inclusion of the RPP1-NdA ARC2 subdomain, from the central NB-ARC domain, was required for a full range of activation specificity. Thus, cooperation between recognition and activation domains seems to be essential for NLR function
    corecore