24 research outputs found

    AKT Signaling Mediates IGF-I Survival Actions on Otic Neural Progenitors

    Get PDF
    Background: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I), through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K). Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. Methodology/Principal Findings: By using a combination of organotypic cultures of chicken (Gallus gallus) otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1) transcription factor. By contrast, our results indicate that post-mitotic p27Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. Conclusions/Significance: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development

    Correction of anaemia through the use of darbepoetin alfa improves chemotherapeutic outcome in a murine model of Lewis lung carcinoma

    Get PDF
    Darbepoetin alfa (Aranesp®, Amgen) is a novel erythropoiesis-stimulating protein with a serum half-life longer than recombinant human erythropoietin (Epo), used in the treatment of cancer-associated anaemia. Anaemia is known to adversely affect prognosis and response to treatment in cancer patients. Solid tumours contain regions of hypoxia due to poor vascular supply and cellular compaction. Although hypoxic stress usually results in cell death, hypoxia-resistant tumour cells are genetically unstable and often acquire a drug-resistant phenotype. Increasing tumour oxygenation and perfusion during treatment could have the doubly beneficial outcome of reducing the fraction of treatment-resistant cells, while increasing drug delivery to previously hypoxic tissue. In this study, we examined the effect of darbepoetin alfa on chemotherapy sensitivity and delivery in an in vivo model of Lewis lung carcinoma, shown here to express the Epo receptor (EpoR). We identified that weekly darbepoetin alfa treatment, commencing 10 days before chemotherapy, resulted in a significant reduction in tumour volume compared to chemotherapy alone. This was mediated by the prevention of anaemia, a reduction in tumour hypoxia and a concomitant increase in drug delivery. Darbepoetin alfa treatment alone did not modulate the growth of the EpoR-expressing tumour cells. This study identifies an important role for darbepoetin alfa in increasing the therapeutic index of chemotherapy

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent
    corecore