671 research outputs found
Treatment of fibrolamellar hepatoma with subtotal hepatectomy or transplantation
Fibrolamellar hepatoma (FL-HCC) is an uncommon variant of hepatocellular carcinoma (HCC), distinguished by histopathological features suggesting greater differentiation than conventional HCC. However, the optimal treatment and the prognosis of FL-HCC have been controversial. Follow-up studies are available from 1 year to 27 years, after 41 patients with FL-HCC were treated with partial hepatectomy (PHx) (28 patients) or liver transplantation (13 patients). In this retrospective study, the effect on outcome was determined for the pTNM stage and other prognostic factors routinely recorded at the time of surgery. Cumulative survival at 1, 3, 5, and 10 years was 97.6%, 72.3%, 66.2%, and 47.4%. Tumor-free survival at these times was 80.3%, 49.4%, 33%, and 29.3%. The TNM stage was significantly associated with tumor-free survival. Patients with positive nodes had a shorter tumor-free survival than those with negative nodes (P < .015). Patient survival was most adversely affected by the presence of vascular invasion (P < .05). FL-HCC is an indolently growing tumor of the liver, which usually was diagnosed in our patients at a stage too advanced for effective surgical treatment of most conventional HCC. Nevertheless, long-term survival frequently was achieved with aggressive surgical treatment. When a subtotal hepatectomy could not be performed, total hepatectomy (THx) with liver transplantation was a valuable option
Photon-induced conduction modulation in SiO 2 thin films embedded with Ge nanocrystals
The authors report the photon-induced conduction modulation in Si O2 thin films embedded with germanium nanocrystals (nc-Ge). The conduction of the oxide could be switched to a higher- or lower-conductance state by a ultraviolet (UV) illumination. The conduction modulation is caused by charging and discharging in the nc-Ge due to the UV illumination. If the charging process is dominant, the oxide conductance is reduced; however, if the discharging process is dominant, the oxide conductance is increased. As the conduction can be modulated by UV illumination, it could have potential applications in silicon-based optical memory devices. Β© 2007 American Institute of Physics.published_or_final_versio
Protocol for the 'e-Nudge trial' : a randomised controlled trial of electronic feedback to reduce the cardiovascular risk of individuals in general practice [ISRCTN64828380]
Background: Cardiovascular disease (including coronary heart disease and stroke) is a major
cause of death and disability in the United Kingdom, and is to a large extent preventable, by lifestyle
modification and drug therapy. The recent standardisation of electronic codes for cardiovascular
risk variables through the United Kingdom's new General Practice contract provides an
opportunity for the application of risk algorithms to identify high risk individuals. This randomised
controlled trial will test the benefits of an automated system of alert messages and practice
searches to identify those at highest risk of cardiovascular disease in primary care databases.
Design: Patients over 50 years old in practice databases will be randomised to the intervention
group that will receive the alert messages and searches, and a control group who will continue to
receive usual care. In addition to those at high estimated risk, potentially high risk patients will be
identified who have insufficient data to allow a risk estimate to be made. Further groups identified
will be those with possible undiagnosed diabetes, based either on elevated past recorded blood
glucose measurements, or an absence of recent blood glucose measurement in those with
established cardiovascular disease.
Outcome measures: The intervention will be applied for two years, and outcome data will be
collected for a further year. The primary outcome measure will be the annual rate of cardiovascular
events in the intervention and control arms of the study. Secondary measures include the
proportion of patients at high estimated cardiovascular risk, the proportion of patients with missing
data for a risk estimate, and the proportion with undefined diabetes status at the end of the trial
Nonlinear Elasticity in Biological Gels
Unlike most synthetic materials, biological materials often stiffen as they
are deformed. This nonlinear elastic response, critical for the physiological
function of some tissues, has been documented since at least the 19th century,
but the molecular structure and the design principles responsible for it are
unknown. Current models for this response require geometrically complex ordered
structures unique to each material. In this Article we show that a much simpler
molecular theory accounts for strain stiffening in a wide range of molecularly
distinct biopolymer gels formed from purified cytoskeletal and extracellular
proteins. This theory shows that systems of semi-flexible chains such as
filamentous proteins arranged in an open crosslinked meshwork invariably
stiffen at low strains without the need for a specific architecture or multiple
elements with different intrinsic stiffnesses.Comment: 23 pages, 5 figures, submitted to Natur
Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues
State of the art research and treatment of biological tissues require
accurate and efficient methods for describing their mechanical properties.
Indeed, micromechanics motivated approaches provide a systematic method for
elevating relevant data from the microscopic level to the macroscopic one. In
this work the mechanical responses of hyperelastic tissues with one and two
families of collagen fibers are analyzed by application of a new variational
estimate accounting for their histology and the behaviors of their
constituents. The resulting, close form expressions, are used to determine the
overall response of the wall of a healthy human coronary artery. To demonstrate
the accuracy of the proposed method these predictions are compared with
corresponding 3-D finite element simulations of a periodic unit cell of the
tissue with two families of fibers. Throughout, the analytical predictions for
the highly nonlinear and anisotropic tissue are in agreement with the numerical
simulations
Security of data science and data science for security
In this chapter, we present a brief overview of important topics regarding the connection of data science and security. In the first part, we focus on the security of data science and discuss a selection of security aspects that data scientists should consider to make their services and products more secure. In the second part about security for data science, we switch sides and present some applications where data science plays a critical role in pushing the state-of-the-art in securing information systems. This includes a detailed look at the potential and challenges of applying machine learning to the problem of detecting obfuscated JavaScripts
Acute left ventricular dysfunction secondary to right ventricular septal pacing in a woman with initial preserved contractility: a case report
<p>Abstract</p> <p>Introduction</p> <p>Right ventricular apical pacing-related heart failure is reported in some patients after long-term pacing. The exact mechanism is not yet clear but may be related to left ventricular dyssynchrony induced by right ventricular apical pacing. Right ventricular septal pacing is thought to deteriorate left ventricular function less frequently because of a more normal left ventricular activation pattern.</p> <p>Case presentation</p> <p>We report the case of a 55-year-old Tunisian woman with preserved ventricular function, implanted with a dual-chamber pacemaker for complete atrioventricular block. Right ventricular septal pacing induced a major ventricular dyssynchrony, severe left ventricular ejection fraction deterioration and symptoms of congestive heart failure. Upgrading to a biventricular device was associated with a decrease in the symptoms and the ventricular dyssynchrony, and an increase of left ventricular ejection fraction.</p> <p>Conclusion</p> <p>Right ventricular septal pacing can induce reversible left ventricular dysfunction and heart failure secondary to left ventricular dyssynchrony. This complication remains an unpredictable complication of right ventricular septal pacing.</p
Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation
Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli. Β© 2014 Balaban et al
- β¦