14 research outputs found

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Spatial working memory is enhanced in children by differential outcomes

    Get PDF
    Working memory (WM) is essential to academic achievement. Any enhancement of WM abilities may improve children's school performance. We tested the usefulness of the differential outcomes procedure (DOP) to enhance typically developing children's performance on a spatial WM task. The DOP involves a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer (outcome). We adapted a spatial memory task to be used with the DOP. Participants had to learn and retain in their WM four target locations of eight possible locations where a shape could be presented. Two groups of 5- and 7-year-old children performed the low-attentional version of the spatial task, and an additional group of 7-year-old children performed the high-attentional version. The results showed that compared with the standard non-differential outcomes procedure (NOP), the DOP produced better memory-based performance in 5-year-old children with the low-attentional task and in 7-year-old children with the high-attentional task. Additionally, delay intervals impaired performance in the NOP but not in the DOP. These findings suggest that the DOP may be a useful complement to other WM intervention programs targeted to improve children's academic performance at school

    Entanglement entropy of black holes

    Get PDF
    The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in Relativit

    The role of cues to differential absolute size in children's transitive inferences.

    No full text
    To investigate the role that "nonlogical" cues might play in transitive inference, 6- and 7-year-olds were given a three-term transitive task in which perceptual cues to differential absolute size were either present or absent. Relationships between the taught premises and the relational information that was physically present were manipulated using four basic conditions: "congruent," "inverse," "pretended," or "persuaded." Both age groups showed identical overall premise memory, but the younger group tended to reason more on the basis of the perceptual information rather than on the successfully encoded premise information. Contrasts between the various conditions showed that categorical effects can be circumvented in three-term problems with appropriate controls, that there may be qualitative as well as quantitative differences in transitive inference with age, and that transitive inference is not based solely on memory. The findings also indicate that, although 7-year-olds are competent in "logic-based" transitive inference, they experience great difficulty on tasks involving pretend information

    Mathematics anxiety—where are we and where shall we go?

    No full text
    In this paper, we discuss several largely undisputed claims about mathematics anxiety (MA) and propose where MA research should focus, including theoretical clarifications on what MA is and what constitutes its opposite pole; discussion of construct validity, specifically relations between self-descriptive, neurophysiological, and cognitive measures; exploration of the discrepancy between state and trait MA and theoretical and practical consequences; discussion of the prevalence of MA and the need for establishing external criteria for estimating prevalence and a proposal for such criteria; exploration of the effects of MA in different groups, such as highly anxious and high math–performing individuals; classroom and policy applications of MA knowledge; the effects of MA outside educational settings; and the consequences of MA on mental health and well-being

    On-entry assessment of school competencies and academic achievement: a comparison between Slovenia and Germany

    No full text
    The foundation of school success is laid early in children\u27s lives. Consequently, assessments of academic precursors may help to identify children in need of additional support. Such early assessments could also be interesting from an international perspective when educational systems are compared. This analysis is used to inform on the comparability of Slovenian and German versions of the English on-school-entry assessment tool "Performance Indicators in Primary School" (PIPS; Tymms and Albone 2002). PIPS was also used to predict later academic achievement in the two national samples. The German sample consisted of 468 children with a mean age of about 6;6 years at school entry (48.7 % girls). In Slovenia, 328 children (49 % girls) were assessed (mean age of about 6;3 years at school entry). Multi-group confirmatory factor analyses for PIPS did not support weak measurement invariance. However, results indicated that the number of factors as well as the pattern of loadings seems to be comparable. Further research is needed to examine in which respects PIPS might work as a tool for international comparisons. Structural equation modelling indicated that PIPS can be used as a predictor of academic achievement and that overall academic achievement could be predicted best by early numeracy. PIPS measures of literacy and numeracy skills were specific and significant predictors of children\u27s later language and math achievement in grade 1. (DIPF/Orig.
    corecore