28 research outputs found

    Risk Factors and Immunity in a Nationally Representative Population following the 2009 Influenza A(H1N1) Pandemic

    Get PDF
    Understanding immunity, incidence and risk factors of the 2009 influenza A(H1N1) pandemic (2009 H1N1) through a national seroprevalence study is necessary for informing public health interventions and disease modelling.We collected 1687 serum samples and individual risk factor data between November-2009 to March-2010, three months after the end of the 2009 H1N1 wave in New Zealand. Participants were randomly sampled from selected general practices countrywide and hospitals in the Auckland region. Baseline immunity was measured from 521 sera collected during 2004 to April-2009. Haemagglutination inhibition (HI) antibody titres of ≥1∶40 against 2009 H1N1 were considered seroprotective as well as seropositive. The overall community seroprevalence was 26.7% (CI:22.6–29.4). The seroprevalence varied across age and ethnicity. Children aged 5–19 years had the highest seroprevalence (46.7%;CI:38.3–55.0), a significant increase from the baseline (14%;CI:7.2–20.8). Older adults aged ≥60 had no significant difference in seroprevalence between the serosurvey (24.8%;CI:18.7–30.9) and baseline (22.6%;CI:15.3–30.0). Pacific peoples had the highest seroprevalence (49.5%;CI:35.1–64.0). There was no significant difference in seroprevalence between both primary (29.6%;CI:22.6–36.5) and secondary healthcare workers (25.3%;CI:20.8–29.8) and community participants. No significant regional variation was observed. Multivariate analysis indicated age as the most important risk factor followed by ethnicity. Previous seasonal influenza vaccination was associated with higher HI titres. Approximately 45.2% of seropositive individuals reported no symptoms.Based on age and ethnicity standardisation to the New Zealand Population, about 29.5% of New Zealanders had antibody titers at a level consistent with immunity to 2009 H1N1. Around 18.3% of New Zealanders were infected with the virus during the first wave including about one child in every three. Older people were protected due to pre-existing immunity. Age was the most important factor associated with infection followed by ethnicity. Healthcare workers did not appear to have an increased risk of infection compared with the general population

    The Role of Host Genetics in Susceptibility to Influenza: A Systematic Review

    Get PDF
    Background: The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380). Methods and Findings: PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven. Conclusion: The fundamental question ‘‘Is susceptibility to severe influenza in humans heritable?’ ’ remains unanswered. No

    Versatile cell-free protein synthesis systems based on chinese hamster ovary cells

    No full text
    We present an alternative production platform for the synthesis of complex proteins. Apart from conventionally applied protein production using engineered mammalian cell lines, this protocol describes the preparation and principle of cell-free protein synthesis systems based on CHO cell lysates. The CHO cell-free system contains endogenous microsomes derived from the endoplasmic reticulum, which enables a direct integration of membrane proteins into a nature like milieu and the introduction of posttranslational modifications. Different steps of system development are described including the cultivation of CHO cells, cell harvesting and cell disruption to prepare translationally active CHO cell lysates. The requirements for DNA templates and the generation of linear DNA templates suitable for the CHO cell-free reaction is further depicted to underline the opportunity to produce different protein variants in a short period. This experimental setup provides a basis for hig h-throughput applications. The productivity of the CHO cell-free systems is further increased by using a non-canonical translation initiation due to the attachment of an internal ribosomal entry site of the Cricket paralysis virus (CRPV IRES) to the 5´ UTR of the desired gene. In this way, a direct interaction of the IRES structure with the ribosome facilitates a translation factor independent initiation of translation. Cell-free reactions were performed in fast and efficient batch reactions leading to protein yields up to 40 μg/mL. The reaction format was further adjusted to a continuous exchange CHO cell-free reaction (CHO CECF) to prolong reaction time and thereby increase the productivity of the cell-free systems. Finally, protein yields up to 1 g/L were obtained. The CHO CECF system represents a sophisticated resource to address structural and functional aspects of difficult-to-express proteins in fundamental and applied research

    Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: A modelling study

    No full text
    Background: 18 500 laboratory-confirmed deaths caused by the 2009 pandemic influenza A H1N1 were reported worldwide for the period April, 2009, to August, 2010. This number is likely to be only a fraction of the true number of the deaths associated with 2009 pandemic influenza A H1N1. We aimed to estimate the global number of deaths during the first 12 months of virus circulation in each country. Methods: We calculated crude respiratory mortality rates associated with the 2009 pandemic influenza A H1N1 strain by age (0-17 years, 18-64 years, and >64 years) using the cumulative (12 months) virus-associated symptomatic attack rates from 12 countries and symptomatic case fatality ratios (sCFR) from five high-income countries. To adjust crude mortality rates for differences between countries in risk of death from influenza, we developed a respiratory mortality multiplier equal to the ratio of the median lower respiratory tract infection mortality rate in each WHO region mortality stratum to the median in countries with very low mortality. We calculated cardiovascular disease mortality rates associated with 2009 pandemic influenza A H1N1 infection with the ratio of excess deaths from cardiovascular and respiratory diseases during the pandemic in five countries and multiplied these values by the crude respiratory disease mortality rate associated with the virus. Respiratory and cardiovascular mortality rates associated with 2009 pandemic influenza A H1N1 were multiplied by age to calculate the number of associated deaths. Findings: We estimate that globally there were 201 200 respiratory deaths (range 105 700-395 600) with an additional 83 300 cardiovascular deaths (46 000-179 900) associated with 2009 pandemic influenza A H1N1. 80% of the respiratory and cardiovascular deaths were in people younger than 65 years and 51% occurred in southeast Asia and Africa. Interpretation: Our estimate of respiratory and cardiovascular mortality associated with the 2009 pandemic influenza A H1N1 was 15 times higher than reported laboratory-confirmed deaths. Although no estimates of sCFRs were available from Africa and southeast Asia, a disproportionate number of estimated pandemic deaths might have occurred in these regions. Therefore, efforts to prevent influenza need to effectively target these regions in future pandemics. Funding: None. © 2012 Elsevier Ltd
    corecore