5,237 research outputs found
Predicting FVIII Activity in Patients Who Use Recombinant FVIII Fc Fusion Protein for Prophylaxis and Treatment of Bleeding Episodes
Evidence for two attentional components in visual working memory
How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). Crucially, these effects were only present for items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus
Exploring the sentence advantage in working memory: Insights from serial recall and recognition
Immediate serial recall of sentences has been shown to be superior to that of unrelated words. This study was designed to further explore how this effect might emerge in recall and to establish whether it also extends to serial recognition, a different form of response task that has relatively reduced output requirements. Using auditory or visual presentation
of sequences, we found a substantial advantage for sentences over lists in serial recall, an effect shown on measures of recall accuracy, order, intrusion, and omission errors and reflected in transposition gradients. In contrast however, recognition memory based on a standard change detection paradigm gave only weak and inconsistent evidence for a sentence superiority effect. However, when a more sensitive staircase procedure imported from psychophysics was used, a clear sentence advantage was found although the effect sizes were smaller than those observed in serial recall. These findings suggest that sentence recall benefits from automatic processes that utilise long-term knowledge across encoding, storage, and retrieval
What does visual suffix interference tell us about spatial location in working memory?
A visual object can be conceived of as comprising a number of features bound together by their joint spatial location. We investigate the question of whether the spatial location is automatically bound to the features or whether the two are separable, using a previously developed paradigm whereby memory is disrupted by a visual suffix. Participants were shown a sample array of four colored shapes, followed by a postcue indicating the target for recall. On randomly intermixed trials, a to-be-ignored suffix array consisting of two different colored shapes was presented between the sample and the postcue. In a random half of suffix trials, one of the suffix items overlaid the location of the target. If location was automatically encoded, one might expect the colocation of target and suffix to differentially impair performance. We carried out three experiments, cuing for recall by spatial location (Experiment 1), color or shape (Experiment 2), or both randomly intermixed (Experiment 3). All three studies showed clear suffix effects, but the colocation of target and suffix was differentially disruptive only when a spatial cue was used. The results suggest that purely visual shape-color binding can be retained and accessed without requiring information about spatial location, even when task demands encourage the encoding of location, consistent with the idea of an abstract and flexible visual working memory system
Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects
Four experiments studied the interfering effects of a to-be-ignored ‘stimulus suffix’ on cued recall of feature bindings for a series of objects. When each object was given equal weight (Experiment 1) or rewards favored recent items (Experiments 2 and 4), a recency effect emerged that was selectively reduced by a suffix. The reduction was greater for a ‘plausible’ suffix with features drawn from the same set as the memory items, in which case a feature of the suffix was frequently recalled as an intrusion error. Changing pay-offs to reward recall of early items led to a primacy effect alongside recency (Experiments 3 and 4). Primacy, like recency, was reduced by a suffix and the reduction was greater for a suffix with plausible features, such features often being recalled as intrusion errors. Experiment 4 revealed a trade-off such that increased primacy came at the cost of a reduction in recency. These observations show that priority instructions and recency combine to determine a limited number of items that are the most accessible for immediate recall and yet at the same time the most vulnerable to interference. We interpret this outcome in terms of a labile, limited capacity ‘privileged state’ controlled by both central executive processes and perceptual attention. We suggest further that this privileged state can be usefully interpreted as the focus of attention in the episodic buffer
Light scattering from three-level systems: The T-matrix of a point-dipole with gain
We present an extension of the T-matrix approach to scattering of light by a
three-level system, using a description based on a Master equation. More
particularly, we apply our formalism to calculate the T-matrix of a pumped
three-level atom, providing an exact and analytical expression describing the
influence of a pump on the light scattering properties of an atomic three-level
system
Long term time variability of cosmic rays and possible relevance to the development of life on Earth
An analysis is made of the manner in which the cosmic ray intensity at Earth
has varied over its existence and its possible relevance to both the origin and
the evolution of life. Much of the analysis relates to the 'high energy' cosmic
rays () and their variability due to the changing
proximity of the solar system to supernova remnants which are generally
believed to be responsible for most cosmic rays up to PeV energies. It is
pointed out that, on a statistical basis, there will have been considerable
variations in the likely 100 My between the Earth's biosphere reaching
reasonable stability and the onset of very elementary life. Interestingly,
there is the increasingly strong possibility that PeV cosmic rays are
responsible for the initiation of terrestrial lightning strokes and the
possibility arises of considerable increases in the frequency of lightnings and
thereby the formation of some of the complex molecules which are the 'building
blocks of life'. Attention is also given to the well known generation of the
oxides of nitrogen by lightning strokes which are poisonous to animal life but
helpful to plant growth; here, too, the violent swings of cosmic ray
intensities may have had relevance to evolutionary changes. A particular
variant of the cosmic ray acceleration model, put forward by us, predicts an
increase in lightning rate in the past and this has been sought in Korean
historical records. Finally, the time dependence of the overall cosmic ray
intensity, which manifests itself mainly at sub-10 GeV energies, has been
examined. The relevance of cosmic rays to the 'global electrical circuit'
points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics
The Leeway of Shipping Containers at Different Immersion Levels
The leeway of 20-foot containers in typical distress conditions is
established through field experiments in a Norwegian fjord and in open-ocean
conditions off the coast of France with wind speed ranging from calm to 14 m/s.
The experimental setup is described in detail and certain recommendations given
for experiments on objects of this size. The results are compared with the
leeway of a scaled-down container before the full set of measured leeway
characteristics are compared with a semi-analytical model of immersed
containers. Our results are broadly consistent with the semi-analytical model,
but the model is found to be sensitive to choice of drag coefficient and makes
no estimate of the cross-wind leeway of containers. We extend the results from
the semi-analytical immersion model by extrapolating the observed leeway
divergence and estimates of the experimental uncertainty to various realistic
immersion levels. The sensitivity of these leeway estimates at different
immersion levels are tested using a stochastic trajectory model. Search areas
are found to be sensitive to the exact immersion levels, the choice of drag
coefficient and somewhat less sensitive to the inclusion of leeway divergence.
We further compare the search areas thus found with a range of trajectories
estimated using the semi-analytical model with only perturbations to the
immersion level. We find that the search areas calculated without estimates of
crosswind leeway and its uncertainty will grossly underestimate the rate of
expansion of the search areas. We recommend that stochastic trajectory models
of container drift should account for these uncertainties by generating search
areas for different immersion levels and with the uncertainties in crosswind
and downwind leeway reported from our field experiments.Comment: 25 pages, 11 figures and 5 tables; Ocean Dynamics, Special Issue on
Advances in Search and Rescue at Sea (2012
The development of path integration: combining estimations of distance and heading
Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
- …
