17 research outputs found

    Thermostable Direct Hemolysin Downregulates Human Colon Carcinoma Cell Proliferation with the Involvement of E-Cadherin, and β-Catenin/Tcf-4 Signaling

    Get PDF
    BACKGROUND: Colon cancers are the frequent causes of cancer mortality worldwide. Recently bacterial toxins have received marked attention as promising approaches in the treatment of colon cancer. Thermostable direct hemolysin (TDH) secreted by Vibrio parahaemolyticus causes influx of extracellular calcium with the subsequent rise in intracellular calcium level in intestinal epithelial cells and it is known that calcium has antiproliferative activity against colon cancer. KEY RESULTS: In the present study it has been shown that TDH, a well-known traditional virulent factor inhibits proliferation of human colon carcinoma cells through the involvement of CaSR in its mechanism. TDH treatment does not induce DNA fragmentation, nor causes the release of lactate dehydrogenase. Therefore, apoptosis and cytotoxicity are not contributing to the TDH-mediated reduction of proliferation rate, and hence the reduction appears to be caused by decrease in cell proliferation. The elevation of E-cadherin, a cell adhesion molecule and suppression of β-catenin, a proto-oncogene have been observed in presence of CaSR agonists whereas reverse effect has been seen in presence of CaSR antagonist as well as si-RNA in TDH treated cells. TDH also triggers a significant reduction of Cyclin-D and cdk2, two important cell cycle regulatory proteins along with an up regulation of cell cycle inhibitory protein p27(Kip1) in presence of CaSR agonists. CONCLUSION: Therefore TDH can downregulate colonic carcinoma cell proliferation and involves CaSR in its mechanism of action. The downregulation occurs mainly through the involvement of E-cadherin-β-catenin mediated pathway and the inhibition of cell cycle regulators as well as upregulation of cell cycle inhibitors

    Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells

    No full text
    Malignant gliomas are heavily infiltrated by immature myeloid cells that mediate immuno-suppression. Agonistic CD40 monoclonal antibody (mAb) has been shown to activate myeloid cells and promote antitumor immunity. Our previous study has also demonstrated blockade of cyclooxygenase-2 (COX-2) reduces immunosuppressive myeloid cells, thereby suppressing glioma development in mice. We therefore hypothesized that a combinatory strategy to modulate myeloid cells via two distinct pathways, i.e., CD40/CD40L stimulation and COX-2 blockade, would enhance anti-glioma immunity. We used three different mouse glioma models to evaluate therapeutic effects and underlying mechanisms of a combination regimen with an agonist CD40 mAb and the COX-2 inhibitor celecoxib. Treatment of glioma-bearing mice with the combination therapy significantly prolonged survival compared with either anti-CD40 mAb or celecoxib alone. The combination regimen promoted maturation of CD11b(+) cells in both spleen and brain, and enhanced Cxcl10 while suppressing Arg1 in CD11b(+)Gr-1(+) cells in the brain. Anti-glioma activity of the combination regimen was T-cell dependent because depletion of CD4(+) and CD8(+) cells in vivo abrogated the anti-glioma effects. Furthermore, the combination therapy significantly increased the frequency of CD8(+) T-cells, enhanced IFN-γ-production and reduced CD4(+)CD25(+)Foxp3(+) T regulatory cells in the brain, and induced tumor-antigen-specific T-cell responses in lymph nodes. Our findings suggest that the combination therapy of anti-CD40 mAb with celecoxib enhances anti-glioma activities via promotion of type-1 immunity both in myeloid cells and T-cells

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    No full text
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014

    The Tenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment

    No full text
    The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R similar to 22,500 300 fiber spectrograph covering 1.514-1.696 mu m. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg(-2)
    corecore