191 research outputs found

    Collagen-Based Scaffolds for Cell Therapies in the Injured Brain

    Get PDF
    published_or_final_versio

    Analysis of the mould void problems by statistical process control on a 28x28mm Quad-Flat-Package integrating circuit

    Get PDF
    published_or_final_versio

    The water permeability of blended polyethylene films

    Get PDF
    Water vapour transmission (WVT) characteristics of blended polyethylene films blown from a 45 mm single-screw extruder were examined. For a given die gap size and blow-up ratio, it was found that WVT basically had an exponential decaying relationship with increasing film thickness. For a given film thickness, molecular orientation on the film in the machine direction could be increased by increasing the size of the die gap. It was found that WVT of blended polyethylene films which involved some proportion of long chain side molecular branches components were more susceptible to die gap size effect than those films only involving linear type molecules. This was thought to be attributed to the more molecular orientation in the machine direction. The results showed that for a given degree of orientation in the transverse direction, WVT decreased if film thickness and die gap size increased. This study also demonstrated that lower WVT required longer saturation time and smaller amount of saturated water vapour obtained.published_or_final_versio

    An update on irreversible electroporation of liver tumours

    Get PDF
    published_or_final_versio

    The role of attentional focus on walking efficiency among older fallers and non-fallers

    Get PDF
    This is the final version. Available on open access from OUP via the DOI in this recordResearch Grants Council of the Hong Kong Special Administrative Region, China

    Aldose reductase deficiency protects the retinal neurons in a mouse model of retinopathy of prematurity

    Get PDF
    Poster Presentation: P64PURPOSE: Retinopathy of prematurity (ROP) is a common retinal disease occurred in premature babies. It is found to be related to oxidative stress while dysfunction of the neural retina has also been documented. We previously showed that genetic deletion or pharmacological inhibition of aldose reductase (AR), a rate- limiting enzyme in the polyol pathway, prevented ischemia-induced retinal ganglion cell (RGC) loss and oxidative stress. Here, we assessed the effects of AR deletion on retinal neurons using a mouse model of ROP. METHODS: Seven-day-old mouse pups were exposed to 75% oxygen for five days and returned to room air. The pathological neuronal changes were examined and compared between wild-type (WT) and AR-deficient retinae on P14 and P17 (P, postnatal). Retinal thickness was measured and immunohistochemistry for calbindin, calretinin, PKCα, Tuj1, glial fibrillary acidic protein (GFAP), nitrotyrosine (NT), as well as poly(ADP-ribose) (PAR) was performed. RESULTS: After hyperoxia exposure, significantly reduced inner nuclear layer (INL) and inner plexiform layer (IPL) thickness were found in both genotypes. The intensity of calbindin staining for horizontal cells in INL was reduced in the WT retinae but not in AR-deficient retinae. In addition, significant reduction was found in calretinin-positive amacrine cell bodies in central INL especially in WT retinae. Serious distortion was also observed in the three calretinin-positive strata along IPL in the WT retinae but not AR-deficient retinae on P17. Moreover, increased GFAP intensity across IPL indicating Müller cell processes was observed in AR-deficient retinae on P14 and in WT retinae on P17. Furthermore, increased NT immunoreactivity in INL and nuclear or para-nuclear PAR staining along GCL were observed in WT retina while these changes were not apparent in AR-deficient retina. CONCLUSION: Our observations demonstrated morphological changes of retinal neurons in the mouse model of ROP and indicated that AR deficiency showed neuronal protection in the retina, possibly through modulating glial responses and reducing oxidative stress.postprin

    Neuroprotective effects of lutein in a rat model of retinal detachment

    Get PDF
    Background: Retinal detachment (RD) is a leading cause of blindness, and although final surgical re-attachment rate has greatly improved, visual outcome in many macula-off detachments is disappointing, mainly because of photoreceptor cell death. We previously showed that lutein is anti-apoptotic in rodent models of ischemia/reperfusion injury. The objective of this study is to investigate lutein as a possible pharmacological adjunct to surgery. Methods: Subretinal injections of 1.4 % sodium hyaluronate were used to induce RD in Sprague-Dawley rats until their retinae were approximately 70 % detached. Daily injections of corn oil (control group) or 0.5 mg/kg lutein in corn oil (treatment group) were given intraperitoneally starting 4 h after RD induction. Animals were euthanized 3 days and 30 days after RD and their retinae were analyzed for photoreceptor apoptosis and cell survival at the outer nuclear layer (ONL) using TUNEL staining and cell counting on retinal sections. Glial fibrillary acidic protein (GFAP) and rhodopsin (RHO) expression were evaluated with immunohistochemistry. Western blotting was done with antibodies against cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9 to delineate lutein's mechanism of action in the apoptotic cascade. To seek a possible therapeutic time window, the same set of experiments was repeated with treatment commencing 36 h after RD. Results: When lutein was given 4 h after RD, there were significantly fewer TUNEL-positive cells in ONL 3 days after RD when compared with the vehicle group. Cell counting showed that there were significantly more nuclei in ONL in lutein-treated retinae by day 30. Treatment groups also showed significantly reduced GFAP immunoreactivity and preserved RHO expression. At day 3 after RD, Western blotting showed reduced expression of cleaved caspase-3 and cleaved caspase-8 in the treatment group. No difference was found for cleaved caspase-9. When lutein was given 36 h after RD similar results were observed. Conclusions: Our results suggest that lutein is a potent neuroprotective agent that can salvage photoreceptors in rats with RD, with a therapeutic window of at least 36 h. The use of lutein in patients with RD may serve as an adjunct to surgery to improve visual outcomes. © 2012 The Author(s).published_or_final_versio
    • …
    corecore