research

Aldose reductase deficiency protects the retinal neurons in a mouse model of retinopathy of prematurity

Abstract

Poster Presentation: P64PURPOSE: Retinopathy of prematurity (ROP) is a common retinal disease occurred in premature babies. It is found to be related to oxidative stress while dysfunction of the neural retina has also been documented. We previously showed that genetic deletion or pharmacological inhibition of aldose reductase (AR), a rate- limiting enzyme in the polyol pathway, prevented ischemia-induced retinal ganglion cell (RGC) loss and oxidative stress. Here, we assessed the effects of AR deletion on retinal neurons using a mouse model of ROP. METHODS: Seven-day-old mouse pups were exposed to 75% oxygen for five days and returned to room air. The pathological neuronal changes were examined and compared between wild-type (WT) and AR-deficient retinae on P14 and P17 (P, postnatal). Retinal thickness was measured and immunohistochemistry for calbindin, calretinin, PKCα, Tuj1, glial fibrillary acidic protein (GFAP), nitrotyrosine (NT), as well as poly(ADP-ribose) (PAR) was performed. RESULTS: After hyperoxia exposure, significantly reduced inner nuclear layer (INL) and inner plexiform layer (IPL) thickness were found in both genotypes. The intensity of calbindin staining for horizontal cells in INL was reduced in the WT retinae but not in AR-deficient retinae. In addition, significant reduction was found in calretinin-positive amacrine cell bodies in central INL especially in WT retinae. Serious distortion was also observed in the three calretinin-positive strata along IPL in the WT retinae but not AR-deficient retinae on P17. Moreover, increased GFAP intensity across IPL indicating Müller cell processes was observed in AR-deficient retinae on P14 and in WT retinae on P17. Furthermore, increased NT immunoreactivity in INL and nuclear or para-nuclear PAR staining along GCL were observed in WT retina while these changes were not apparent in AR-deficient retina. CONCLUSION: Our observations demonstrated morphological changes of retinal neurons in the mouse model of ROP and indicated that AR deficiency showed neuronal protection in the retina, possibly through modulating glial responses and reducing oxidative stress.postprin

    Similar works