47 research outputs found

    Analytical methods applied to diverse types of Brazilian propolis

    Get PDF
    Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen) can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting

    Optimized Enzymatic Synthesis of Hesperidin Fatty Acid Esters in a Two-Phase System Containing Ionic Liquid

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Response surface methodology (RSM) based on a five-level, three-variable central composite design (CCD) was employed for modeling and optimizing the conversion yield of the enzymatic acylation of hesperidin with decanoic acid using immobilized Candida antarctica lipase B (CALB) in a two-phase system containing [bmim]BF(4). The three variables studied (molar ratio of hesperidin to decanoic acid, [bmim]BF(4)/acetone ratio and lipase concentration) significantly affected the conversion yield of acylated hesperidin derivative. Verification experiments confirmed the validity of the predicted model. The lipase showed higher conversion degree in a two-phase system using [bmim] BF4 and acetone compared to that in pure acetone. Under the optimal reaction conditions carried out in a single-step biocatalytic process when the water content was kept lower than 200 ppm, the maximum acylation yield was 53.6%.16871717182Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [09/09224-3

    In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancers are some of the leading causes of human deaths worldwide and their relative importance continues to increase. Since an increasing proportion of cancer patients are acquiring resistance to traditional chemotherapeutic agents, it is necessary to search for new compounds that provide suitable specific antiproliferative affects that can be developed as anticancer agents. Propolis from the stingless bee, <it>Trigona laeviceps</it>, is one potential interesting source that is widely available and cultivatable (as bee hives) in Thailand.</p> <p>Methods</p> <p>Propolis (90 g) was initially extracted by 95% (v/v) ethanol and then solvent partitioned by sequential extractions of the crude ethanolic extract with 40% (v/v) MeOH, CH<sub>2</sub>Cl<sub>2 </sub>and hexane. After solvent removal by evaporation, each extract was solvated in DMSO and assayed for antiproliferative activity against five cancer (Chago, KATO-III, SW620, BT474 and Hep-G2) and two normal (HS27 fibroblast and CH-liver) cell lines using the MTT assay. The cell viability (%) and IC<sub>50 </sub>values were calculated.</p> <p>Results</p> <p>The hexane extract provided the highest <it>in vitro </it>antiproliferative activity against the five tested cancer cell lines and the lowest cytotoxicity against the two normal cell lines. Further fractionation of the hexane fraction by quick column chromatography using eight solvents of increasing polarity for elution revealed the two fractions eluted with 30% and 100% (v/v) CH<sub>2</sub>Cl<sub>2 </sub>in hexane (30DCM and 100DCM, respectively) had a higher anti-proliferative activity. Further fractionation by size exclusion chromatography lead to four fractions for each of 30DCM and 100DCM, with the highest antiproliferative activity on cancer but not normal cell lines being observed in fraction# 3 of 30DCM (IC<sub>50 </sub>value of 4.09 - 14.7 μg/ml).</p> <p>Conclusions</p> <p><it>T. laeviceps </it>propolis was found to contain compound(s) with antiproliferative activity <it>in vitro </it>on cancer but not normal cell lines in tissue culture. The more enriched propolis fractions typically revealed a higher antiproliferative activity (lower IC<sub>50 </sub>value). Overall, propolis from Thailand may have the potential to serve as a template for future anticancer-drug development.</p

    Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines

    Get PDF
    Propolis is a resin formed by a complex chemical composition of substances that bees collect from plants. Since ancient times, propolis has been used in folk medicine, due to its biological properties, that include antimicrobial, anti-inflammatory, antitumoral and immunomodulatory activities. Glioblastoma is the most common human brain tumor. Despite the improvements in GBM standard treatment, patients’ prognosis is still very poor. The aim of this work was to evaluate in vitro the Tubi-bee propolis effects on human glioblastoma (U251 and U343) and fibroblast (MRC-5) cell lines. Proliferation, clonogenic capacity and apoptosis were analyzed after treatment with 1 mg/mL and 2 mg/mL propolis concentrations for different time periods. Additionally, glioblastoma cell lines were submitted to treatment with propolis combined with temozolomide (TMZ). Data showed an antiproliferative effect of tubi-bee propolis against glioblastoma and fibroblast cell lines. Combination of propolis with TMZ had a synergic anti-proliferative effect. Moreover, propolis caused decrease in colony formation in glioblastoma cell lines. Propolis treatment had no effects on apoptosis, demonstrating a cytostatic action. Further investigations are needed to elucidate the molecular mechanism of the antitumor effect of propolis, and the study of its individual components may reveal specific molecules with antiproliferative capacity

    Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of <it>M. fasciculata </it>geopropolis against oral pathogens, its effects on <it>S. mutans </it>biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on <it>S. mutans </it>and its immunotoxicological potential.</p> <p>Methods</p> <p>Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs.</p> <p>Results</p> <p>Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for <it>S. mutans </it>and <it>C. albicans</it>, but presented no activity against <it>L</it>. <it>acidophilus</it>. The MBCs for HAE-2 and HAE-3 against <it>S. mutans </it>were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on <it>S. mutans </it>biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected.</p> <p>Conclusions</p> <p>In summary, geopropolis produced by <it>M. fasciculata </it>can exert antimicrobial action against <it>S. mutans </it>and <it>C. albicans</it>, with significant inhibitory activity against <it>S. mutans </it>biofilms. The extract with the highest flavonoid concentration, HAE-2, presented the highest antimicrobial activity. In addition, a geopropolis-based gel is not toxic in an animal model and displays anti-inflammatory effect.</p

    Analysis of Soluble Lignin in Sugarcane by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry with a Do-It-Yourself Oligomer Database

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Lignin is a polymer found in the cell wall of plants and is one of the main obstacles to the implementation of second-generation ethanol production because it confers the recalcitrance of the lignocellulosic material. The recalcitrance of biomass is affected by the amount of lignin, by its monomer composition, and the way the monomers are arranged in the plant cell wall. Analysis of lignin structure demands mass spectrometry analysis, and identification of oligomers is usually based on libraries produced by laborious protocols. A robust method to build a do-it-yourself lignin oligomer library was tested. This library can be built using commercially available enzymes, standards, and reagents and is relatively easy to accomplish. An ultrahigh performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the separation and characterization of monomers and oligomers was developed and was equally applicable to the synthetic lignin and to soluble lignin extracted from a sample of sugar cane.841670157020Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2008/58035-6

    PLC method for quantification and characterization of cholesterol and its oxidation products in eggs

    No full text
    A new method was developed for the simultaneous determination of cholesterol and its oxidation products in eggs, using HPLC with UV and refractive index (RI) detectors, and HPLC interfaced with atmospheric pressure chemical ionization coupled to MS (HPLC-APCI-MS). The best conditions for direct saponification of the sample and extraction of the non-saponifiable material were defined using complete factorial designs with central points. The method showed accuracy and precision with a detection limit between 0.002 and 0.079 mu g/g. The oxides cholest-5-ene-3 beta,20 alpha-diol and cholest-5-ene-3 beta,25-diol identified by HPLC-UV-RI were not confirmed by HPLC-APCI-MS.41661562
    corecore