2,272 research outputs found

    Jachère et systèmes agraires

    Get PDF
    Dans le sud-ouest du Niger, les jachères occupent encore une place relativement importante : quinze à trente pour cent de la surface agricole utile des terroirs. Cependant, du fait du surpâturage, leur production, herbacée et ligneuse, est faible. Cette étude précise la place des jachères dans les systèmes d'élevage du terroir de Ticko, situé à cinquante kilomètres au sud de Niamey. Les jachères sont constituées pour quatre-vingts pour cent de jachères de courtes durée (inférieur à 6 ans). La végétation des jachères de tous âges est dominée par #Zornia glochidiata, petite légumineuse herbacée peu productive et par l'arbuste #Guiera senegalensis. En 1996, la production herbacée (hauteur des pluies = 552 mm) était de deux mille cinq cents kilogrammes de matière sèche par hectare. La production fourragère totale consommable des formations naturelles et des champs était égale à deux mille huit cent trente-cinq tonnes de matière sèche. Les jachères contribuaient pour quarante-huit pour cent à cette production alors qu'elles ne représentaient que vingt-trois pour cent de la surface fourragère. La capacité de charges du terroir atteignait mille six cent vingt-neuf unités de bétail tropical, soit mille six cent soixante-treize unités bétail tropical, en tenant compte de la transhumance, était proche de cette valeur. Les observations sur le comportement alimentaire des bovins et des petits ruminants montrent que #Zornia glochidiata et #Guiera senegalensis constituent la base de l'alimentaton des animaux sur les jachères, avec des espèces telles que #Andropogon gayanus et #Loudetia togoensis qui, malgré leur faible contribution spécifique, sont très recherchées par le bétail. Les jachères malgré leur faible capacité de production restent l'élément clé du système fourrager des terroirs du sud-ouest du Niger... (D'après résumé d'auteur

    Magnetic imaging with an ensemble of Nitrogen Vacancy centers in diamond

    Full text link
    The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using Optically Detected Magnetic Resonance (ODMR). In this work, we exploit the ODMR signal of an ensemble of NV centers in order to quantitatively map the vectorial structure of a magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The reconstruction of the magnetic field is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 {\mu}m^2 area of the doped layer, equivalent to a sensor consisting of approximately 10^4 NV centers, is of the order of 2 {\mu}T/sqrt{Hz}. The spatial resolution of the imaging device is 400 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The versatility of the sensor is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.Comment: 11 pages, 5 figures, figure 4 added, results unchange

    Test of the τ-model of Bose–Einstein correlations and reconstruction of the source function in hadronic Z-boson decay at LEP

    Get PDF
    Bose–Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a Lévy stable distribution in conjunction with a model where a particle’s momentum is correlated with its space–time point of production, the τ-model. Using this description and the measured rapidity and transverse momentum distributions, the space–time evolution of particle emission in two-jet events is reconstructed. However, the elongation of the particle emission region previously observed is not accommodated in the τ-model, and this is investigated using an ad hoc modification

    Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample

    Get PDF
    We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition (CVD) growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated NV defects are oriented with a ~ 97 % probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.Comment: 6 pages, 4 figure

    Rare decay Z --> neutrino antineutrino photon photon via quartic gauge boson couplings

    Full text link
    We present a detailed calculation of the rare decay Z --> neutrino antineutrino photon photon via the quartic neutral gauge boson coupling Z-Z-photon-photon in the framework of the effective Lagrangian approach. The current experimental bound on this decay mode is then used to constrain the coefficients of this coupling. It is found that the bounds obtained in this way, of the order of 10110^{-1}, are weaker than the ones obtained from the analysis of triple-boson production at LEP-2Comment: 5 pages, 2 figures, to appear in Physical Review D Brief Report

    Good Learning and Implicit Model Enumeration

    Get PDF
    MathSBML is an open-source, freely-downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a toolneutral,computer-readable format for representing models of biochemical reaction networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, a standard medium for representing and transporting data that is widely supported on the internet as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication and survival. In addition to MathSBML, a number of other tools that support SBML model examination and manipulation are provided on the sbml.org website, including libSBML, a C/C++ library for reading SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica as well as providing an API for model manipulation and simulation

    Flavour structure of low-energy hadron pair photoproduction

    Full text link
    We consider the process γγH1Hˉ2\gamma\gamma\to H_1\bar H_2 where H1H_1 and H2H_2 are either mesons or baryons. The experimental findings for such quantities as the ppˉp\bar p and KSKSK_SK_S differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole--resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKSK_SK_S and the K+KK^+K^- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρωa\rho\omega\to a subprocess in the VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the ϕ\phi component, and is hence constrained. We give similar constraints to a number of other hadron pair production channels. After writing down the scaling and pole--resonance contributions accordingly, the direct summation of the two contributions is found to reproduce some salient features of the ppˉp\bar p and K+KK^+K^- data.Comment: 12 pages, 9 figures, revised version to be published in EPJ

    Study of the stability of a paramagnetic label linked to mesoporous silica surface in contact with rat mesothelial cells in culture.

    Get PDF
    Stable radicals detectable by electron paramagnetic resonance (EPR) may be use in the investigation of early events in cell-particle toxicity. Piperidine-N-oxyl derivatives (nitroxides), covalently linked to the surface of a high surface area silica (used as model solid for the technique), served as probes in the investigation of the effects of incubation of silica particles with mesothelial cells. A mesoporous silica (MCM-41), prepared by precipitation from a micellar solution, was the most appropriate silica-based particle for this purpose, as its channels allow direct contact with small molecules but not with macromolecules. The cytotoxicity of this amorphous silica is very low, allowing relatively high particle loading in the cell cultures. Both the high surface area of the sample and the large amount of inorganic material extracted from the cell culture provide enough material to run reasonably intense EPR spectra. Computer-aided analysis of the EPR spectra of silica-bound nitroxides provided information on the sensitivity of the labeled silica monitoring different environments, e.g., to follow the path of particles in a mammalian cell culture. Upon contact of the particles with mesothelial cells, the mean distance among the labels at the silica surface decreased as a consequence of the release of oxidizing and/or radical moieties from the cells
    corecore